

®

NNMM66440033 SSooffttwwaarree DDeevveellooppmmeenntt KKiitt

AApppplliiccaattiioonn RReeppoorrtt
 FFaasstt HHaaddaammaarrdd TTrraannssffoorrmm

RReevviissiioonn 22..00

WWrriitttteenn bbyy VViittaallii KKaasshhkkaarroovv

2 AApppplliiccaattiioonn rreeppoorrtt
Fast Hadamard Transform

CCoonntteennttss

INTRODUCTION ...3
BRIEF DESCRIPTION OF HADAMARD TRANSFORM ..4
ALGORITHM IMPLEMENTATION IN C LANGUAGE..6
IMPLEMENTATION OF THE ALGORITHM ON NM6403..7

CONCEPT OF CALCULATIONS ...7
IMPLEMENTATION OF THE FIRST THREE STEPS OF FHT ..7

Loading of the Active Matrix ..9
Making the calculations ...11
Methods of Addressing..13

IMPLEMENTATION OF THE NEXT FIVE STEPS OF FHT ..13
Making the calculations ...16

CONCLUSION ...18
BIBLIOGRAPHY ...19

3AApppplliiccaattiioonn rreeppoorrtt
Fast Hadamard Transform

 IInnttrroodduuccttiioonn

This document describes an approach to Fast Hadamard Transform (FHT)
programming on the NeuroMatrix® NM6403 processor. The following
indexes are used as parameters defining the transform:

• input data bit length: 8 bits (signed data),

• number of steps: 8,

• output data bit length: 16 bits (signed data),

• source vector size: 256 bytes,

• result vector size: 256 short words (16-bit).

The program was implemented on the NM6403 processor. The main
features of this processor are the matrix operational node with the 64x64 bit
capacity and the possibility of software assigning the processed data
capacity. More detailed information about NM6403 see in [1].

The document contains detailed comments for methods of processor
programming in assembly language. Special attention is drawn to work with
the processor matrix operational node.

4 AApppplliiccaattiioonn rreeppoorrtt
Fast Hadamard Transform

BBrriieeff DDeessccrriippttiioonn ooff HHaaddaammaarrdd TTrraannssffoorrmm

Hadamard transform is made over integer numbers. Two-valued Walsh
functions taking values , 1 -1 are used as basis functions. That’s why
Hadamard transform does not have any other operations besides summation
and subtraction.

Hadamard transform can be expressed in the form of multiplication of
matrix by vector. The transform matrix - Hadamard matrix - consists of +1
and -1. The matrix rows and columns are orthogonal. Hadamard matrix can
be defined recursively:

H
H H
H HN

N N

N N
2

1
2

=
−

⎡

⎣
⎢

⎤

⎦
⎥H2

1
2

1 1
1 1

=
−

⎡

⎣
⎢

⎤

⎦
⎥ and

For example, the matrix of the eighth order looks like:

Fig. 1 Hadamard Matrix of the 8-th Order.

H8

1
2

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

=

− − − −
− − − −

− − − −
− − − −

− − − −
− − − −

− − − −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

nIf a vector x with the length N (N=2) is the input one then a vector y
obtained in the result of Walsh-Hadamard transform is equal to y = HNx.

The transform described above is called discrete (DHT). However fast
Hadamard transform (FHT) is more often used in practice. The following
table can describe its essence:

Tab. 1 Steps of Fast Hadamard Transform.
Input data Step one (1) Step two (2) Step three (3)

a1 b = a + a1 1 2 c = b + b d = c + c1 1 3 1 1 5

a2 b = a - a2 1 2 c = b + b d = c + c2 2 4 1 2 6

a3 b = a + a3 3 4 c = b - b d = c + c3 1 3 1 3 7

a4 b = a - a4 3 4 c = b - b d = c + c4 2 4 1 4 8

a5 b = a + a5 5 6 c = b + b d = c - c5 5 7 1 1 5

a6 b = a - a6 5 6 c = b + b d = c - c6 6 8 1 2 6

a7 b = a + a7 7 8 c = b - b d = c - c5 5 7 1 3 7

a8 b = a - a8 7 8 c = b - b d = c - c6 6 8 1 4 8

BBrriieeff DDeessccrriippttiioonn ooff HHaaddaammaarrdd TTrraannssffoorrmm

Fig. 1 shows that the elements of Step 3 of the transform can be expressed
through the input array elements in the following way:

d

5AApppplliiccaattiioonn RReeppoorrtt
Fast Hadamard Transform

1 = a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8

d2 = a1 - a2 + a3 - a4 + a5 - a6 + a7 - a8

d3 = a1 + a2 - a3 - a4 + a5 + a6 - a7 - a8

d4 = a1 - a2 - a3 + a4 + a5 - a6 - a7 + a8

d5 = a1 + a2 + a3 + a4 - a5 - a6 - a7 - a8

d6 = a1 - a2 + a3 - a4 - a5 + a6 - a7 + a8

d7 = a1 + a2 - a3 - a4 - a5 - a6 + a7 + a8

d8 = a1 - a2 - a3 + a4 - a5 + a6 + a7 - a8

It is clear from Fig. 1 that the coefficients and 1 -1 in front of the input
vector items exactly correspond to the Hadamard matrix of the 8-th order.

In general the transform at the k-th step defines the interaction of 2k input
vector elements. Here each element of the first 2k-1 ones is filled with sum of
it's prior value and the value of the element which is at the distance of 2k-1
elements from it and the second 2k-1 elements are filled with the differences
(see Fig. 2):

Fig. 2 Transforms at the k-th Step.
... ...a k2 1− a k2 11− +

a k2
a1

 transform ↓ ↓ ↓ ↓

a1 + a k2 11− +
... a k2 1− + a a k2 11− +

... a k2 1−k2
a1 - - a k2

at the k-th step

the first 2k-1 items the second 2k-1 items

In the result of the transform every item of the output vector is expressed
through all items of the input one. However if we go one transform step
back we will see that there are two data blocks and complete
interrelationship between the elements exists in each block. At the same
time in the formula of transform of the items of one block none of the items
of the other block participates, i.e. the blocks are absolutely independent.
For example, every two items are independent from their neighbors at the
first step because only their values:
b1 = a1 + a2

 b2 = a1 - a2

are included into the formula of their calculation. That’s why, for example,
calculation of the values of pairs of elements (b , b), (b , b1 2 3 4), ...(b ,b)
can be made independently. Thus independently calculated blocks can be
extracted at each step up to the last one.

k2 1− k2

6 AApppplliiccaattiioonn rreeppoorrtt
Fast Hadamard Transform

AAllggoorriitthhmm IImmpplleemmeennttaattiioonn iinn CC LLaanngguuaaggee

Hadamard transform in C language can be written in the following way:
void Adamar(int AStepsNum, // number of steps
 int* AData) // data array

{

 int DataSz, i, j, jj, Block, Pair, Ind0, Ind1;

 int Item0, Item1;

 /* preparation */

 DataSz = 1 << StepsNum; // calculation of the array size

 /* Hadamard transform */

 Block = 1;

 for(i = 0; i < AStepsNum; i++) {

 Pair = Block; // distance between (a1 ,a k2 1+
)pairs

 Block += Block; // independent block size for the current step

 for(j = 0; j < DataSz; j += Block) {

 for(jj = 0; jj < Pair; jj++) {

 Ind0 = j + jj; // first item index calculation

 Ind1 = ind0 + Pair; // second item index

 Item0 = AData[Ind0]; // get old values

 Item1 = AData[Ind1];

 AData[ind0] = Item0 + Item1; //store new values

 AData[ind1] = Item0 - Item1;

 }

 }

 }

}

This example is for 32-bit data processing. The input parameter AStepNum
assigns the number of transform steps (). The parameter AStepNum = 8

 gets a pointer at the input data array of 256 elements. AData

The example of Hadamard transform implementation in C is designed for
sequential execution of instructions that is typical for Pentium like
architectures. In that case equal time is needed to calculate each step. There
is no any parallelism in the example above. That’s why this text compilation
into the NM6403 processor codes will not give satisfactory results.

7AApppplliiccaattiioonn rreeppoorrtt
Fast Hadamard Transform

IImmpplleemmeennttaattiioonn ooff tthhee aallggoorriitthhmm oonn NNMM66440033

NeuroMatrix® NM6403 processor allows software changing of the
processing data bit length. It means that having assigned the corresponding
configuration of its Active Matrix participating in the calculations, it is
possible to execute transforms over 8-bit data during several steps. After the
theoretically calculated 8-bit capacity of the results is reached its is possible
to transform data into 16-bit form and continue the calculations, etc.
Maximum possible accumulator size that could be implemented on the
NM6403 processor is 64 bit. So if the initial data capacity doesn't exceed 8
bit for signed data, it is possible to make 56 steps of Hadamard transform
without exceeding data range of accumulator. Here 256(~1017) of 64-bit
memory words will be needed to place the result vector.

The matrix operational node of NeuroMatrix® NM6403 allows making
calculations of up to 5 transform steps in parallel. This approach is
described below.

Concept of calculations
The FHT task is divided into two routines. The first one calculates first three
steps of FHT and converts data from 8 bits representation to 16 bits. The
second one makes calculations for the next 5 steps of FHT in parallel.

Both routines have C-callable interface, so they are available from C file.
The C main() program fills an input buffer with initial values. After that it
starts clocks counting and calls the hand optimized assembly routines to
make calculations over the buffer. After calculations are made it counts
number cycles spent on execution of the routines and calculates check sum
to ensure that the results are correct. If the check sum is equal to the
expected one the main returns number of cycles otherwise error code (-1).

Implementation of the first three steps of FHT
Since the input data bit length does not exceed 8 bits and the results of
execution are stored into 16 bits, no any preliminary input data transform is
required. It means that the input data is processed "as is". We assume that
they are packed into 64-bit words so the NeuroMatrix® NM6403 operates 8
elements in parallel. The results of calculation are accumulated into 16-bit
elements packed into 64-bit words.

Let's consider the Hadamard matrix of 8th order (Fig. 1). It has eight
columns and eight rows. Each 8-bit element of a long input word multiplies
to each cell of a related row in the Hadamard matrix. The results of
multiplication are accumulated over each column. To avoid data overflow

IImmpplleemmeennttaattiioonn ooff tthhee aallggoorriitthhmm oonn NNMM66440033

it's necessary to accumulate the results into 16-bit cells. That is why the
total accumulator bit length should be at least 128 bits.

Fig. 3 Division of the 8th order Hadamard matrix into sub-matrixes.

FF 1 1 FF 1 FF FF 1 63

1 1 FF FF FF FF 1 1
1 FF 1 FF FF 1 FF 1
FF FF FF FF 1 1 1 1
1 FF FF 1 1 FF FF 1
FF FF 1 1 FF FF 1 1
FF 1 FF 1 FF 1 FF 1
1 1 1 1 1 1 1 1

0
63 ↓ ↓ ↓ ↓ 0 63 ↓ ↓ ↓ ↓ 0

d
8

d
7

d
6

d
5

d
4

d
3

d
2

d
1

odd long word of result even long word of result

Input The 8th order Hadamard matrix
a8 → FF 1 1 FF 1 FF FF 1 63

a
7 → 1 1 FF FF FF FF 1 1

a
6 → 1 FF 1 FF FF 1 FF 1

a
5 → FF FF FF FF 1 1 1 1

a
4 → 1 FF FF 1 1 FF FF 1

a
3 → FF FF 1 1 FF FF 1 1

a
2 → FF 1 FF 1 FF 1 FF 1

a
1 → 1 1 1 1 1 1 1 1

0

128 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 0

d
8

d
7

d
6

d
5

d
4

d
3

d
2

d
1

From Fig. 3 you can see that it is possible to divide the Hadamard matrix
into two sub-matrixes. The first sub-matrix is used to calculate even long
words of the result, the second one to compute odd long words.

Each sub-matrix contains 32 cells that is every cycle the NeuroMatrix®
NM6403 makes 32 MAC (multiplications and accumulations).

We make calculations in the following order:

• Load first sub-matrix of Hadamard weights into the Active Matrix of the
processor;

• Calculate the even long words of result. The results are accumulated in
. Its capacity is 32 long words; afifo

• Store them into even positions of the result array;

• At the same time reload the new weights into the Active Matrix;

• Make second round of calculations and store the results into odd
positions of the result array.

Below in this document you can see description of implementation of each
step of calculations mentioned above.

8 AApppplliiccaattiioonn rreeppoorrtt
Fast Hadamard Transform

IImmpplleemmeennttaattiioonn ooff tthhee aallggoorriitthhmm oonn NNMM66440033

Loading of the Active Matrix

The data processing scheme that is used in the NeuroMatrix® MN6403's
Matrix Operational Node (MON) is shown in Fig. 4:

Fig. 4 Data processing in the Active Matrix.

Input X (data) Active Matrix (First loading)
a256 ... a8 → 1 FF FF 1 63 7th row
a255 ... a7 → FF FF 1 1
a254 ... a6 → FF 1 FF 1
a253 ... a5 → 1 1 1 1
a252 ... a4 → 1 FF FF 1
a251 ... a3 → FF FF 1 1 2th row
a250 ... a2 → FF 1 FF 1
a249 ... a1 → 1 1 1 1 0 0

th row
32

→
1 63 ↓ ↓ ↓ ↓ 0

d252 d251 d250 d249 32
... ↓
d4 d3 d2 d1 1

the result is in afifo

Input X (ram) Active Matrix (Second loading)
a256 ... a8 → FF 1 1 FF 63

 7
th row

a255 ... a7 → 1 1 FF FF
a254 ... a6 → 1 FF 1 FF
a253 ... a5 → FF FF FF FF
a252 ... a4 → 1 FF FF 1
a251 ... a3 → FF FF 1 1 2th row
a250 ... a2 → FF 1 FF 1
a249 ... a1 → 1 1 1 1 0 0

th row
32 → 1 63 ↓ ↓ ↓ ↓ 0

d256 d255 d254 d253 32
... ↓
d8 d7 d6 d5 1

the result is in afifo

b) Second stage of calculations (odd long words of result

a) First stage of calculations (even long words of result

Suppose the weights were preliminary loaded into the Active Matrix from
the external memory. The way of weights loading is described below.

The input data stream goes in through the input X. The input and output
buffers are of FIFO type. They can contain up to 32 of 64-bit words. Each of
the FIFO's: , , ram data afifo can be used as the source for X. The results
are always accumulated in . afifo

9AApppplliiccaattiioonn RReeppoorrtt
Fast Hadamard Transform

IImmpplleemmeennttaattiioonn ooff tthhee aallggoorriitthhmm oonn NNMM66440033

The weights are stored into the memory in form of an array of 64-bit words.
The number of words to be loaded into the Active Matrix is defined by the
sb2 register. This register configures the number of rows in the Active
Matrix. Each row is assigned to one 64-bits word. The first long word of the
array is loaded into the 0th th row of the matrix, second one into the 1 row and
so on.

From Fig. 4 it can be seen that rows of the Active Matrix are numerated
upwards. This way of numeration is caused by numeration of bits in a word
(bits in a word are ordered from the right to the left, the low-order bit is at
the right position). Memory addresses increase is made in the same
direction.

The following assembly text block defines the weights array that will be
loaded into the Active Matrix to calculate first three steps of Hadamard
transform.

data ".data"

 M_1_3: long[16] = (00001000100010001hl, // zero row
 0FFFF0001FFFF0001hl, //low-order bit of the word
 0FFFFFFFF00010001hl, // the second row
 00001FFFFFFFF0001hl,
 00001000100010001hl,
 0FFFF0001FFFF0001hl,
 0FFFFFFFF00010001hl,
 00001FFFFFFFF0001hl, // the seventh row

 00001000100010001hl, // zero row of second part
 0FFFF0001FFFF0001hl, // of weights
 0FFFFFFFF00010001hl,
 00001FFFFFFFF0001hl,
 0FFFFFFFFFFFFFFFFhl,
 00001FFFF0001FFFFhl,
 000010001FFFFFFFFhl,
 0FFFF00010001FFFFhl); // the seventh row

end ".data";
As the NM6403 processor's Active Matrix is divided into 4 columns by nb2
register, the low-order 16-bit word of the 0th long word in the array goes
into the 0th column, the first 16-bit word into the first one, etc.

It is important that though the Active Matrix rows are numerated Note
upwards, the 0th long word at the top of the array presented above will go
to the 0th row of the Active Matrix.

Weights are loaded from memory into a special internal memory block of
the processor called . This block is also of FIFO type. It can be used wfifo
only

10 AApppplliiccaattiioonn rreeppoorrtt
Fast Hadamard Transform

 for loading weights into the Matrix Operational Node. wfifo has one
additional feature if compared with other internal memory blocks. It can be
filled in for several operations.

Loading of data from memory into the Active Matrix is described by the
following instructions in assembly:

IImmpplleemmeennttaattiioonn ooff tthhee aallggoorriitthhmm oonn NNMM66440033

11AApppplliiccaattiioonn RReeppoorrtt
Fast Hadamard Transform

begin ".text"
<_Steps_1_3>
.branch; // switch on the parallel vector instructions execution.
 nb1 = 80008000h; // Configuration of the columns number.
 sb = 03030303h; // Configuration of the rows number.
 ar0 = M_1_3; // Address of the weights array.
 rep 16 wfifo = [ar0++], ftw, wtw; // Loading of weights.
 ...
end ".text";

At first the registers nb1 and sb are filled with the constants that configure
the number of columns and rows of the Shadow Matrix. The nb1 and sb1
are associated with the Shadow Matrix. In fact the Active Matrix
configuration will come in force only after the wtw instruction is executed.

The nb1 and sb registers are 64-bit. If they are initialized with a 32-bit
instruction the processor copies this value into both 32-bit parts of a long
word, i.e. the register nb1 is initialized with a long constant
8080808080808080hl. The same is true for the sb register. Usage of the
nb1 and sb (sb1,sb2) registers is described in more details in [3].

After the control registers nb1 and sb are initialized the configuration of the
Shadow Matrix and the future configuration of the Active Matrix are
defined.

The address of the weights array is put into the address register. Then 16
long words of data are loaded from memory to wfifo.

The instruction ftw transfers data from wfifo to the Shadow Matrix. The
number of words that will be read from wfifo is defined by sb1.(in our
case the number of rows in the Shadow Matrix is 8, so 8 long words will be
transferred).

ftw always takes 32 cycles, regardless of the number of words that have to
be loaded into the Matrix Operational Node. For example, in the case of the
8th order Hadamard matrix only eight 64-bit words should be loaded, but
their conversion into the internal representation lasts 32 cycles. However
conversion takes place in parallel with weights loading and starts one cycle
after the first word is loaded into wfifo.

After the weights are transferred into the Shadow Matrix the instruction wtw
is executed. It copies the contents of the Shadow Matrix into the Active
Matrix for one cycle. At the same time the values of the registers nb1 and
sb1 are copied to nb2 and sb2. Loading of the Active Matrix is complete.

Making the calculations
The following assembly text block defines the most important part of the
routine that calculates the first three steps of Hadamard transform:

// Section of source code.

begin ".text"

// The routine for the first 3 steps of FHT.

<_Steps_1_3>

IImmpplleemmeennttaattiioonn ooff tthhee aallggoorriitthhmm oonn NNMM66440033

12 AApppplliiccaattiioonn rreeppoorrtt
Fast Hadamard Transform

.branch; // switch on the parallel vector instructions execution.

 ...

 // Load the columns configuration of the Shadow Matrix.

 gr0 = 80008000h;

 // Copy the columns configuration into nb1 | Init gr4 with zero.

 nb1 = gr0 with gr4 = false;

 // Load the rows configuration of the Shadow Matrix.

 sb = 03030303h;

 // Load the address of weights array | gr4 = 1;

 ar0 = M_1_3 with gr4++;

 // Load 16 long words to wfifo, transfer 8 words to the Shadow Matrix

 // and copy the Shadow Matrix contents to the Active Matrix.

 rep 16 wfifo = [ar0++], ftw, wtw;

 // Load the address of source buffer | gr4 = 2;

 ar0 = [--ar5] with gr4 <<= 1;

 // Load the address of destination buffer | gr5 = 4; <- Increment value

 ar4 = [--ar5] with gr5 = gr4 << 1;

 // ar5 points to the destination buffer address + 2 (next long word).

 ar5 = ar4 + gr4 with gr4 = gr5;

 // Load source data, make calculations and

 // transfer 8 long words from wfifo to the Shadow Matrix.

 rep 32 ram = [ar0++],ftw with vsum , data, 0;

 // Store results in memory. // These two instructions are

 rep 32 [ar4++gr4] = afifo; // executed in parallel.

 // This part of code is used to step over the silicon bug.

.wait; // switch off the parallel vector instructions execution.

 // Copy the same constant to nb1 to lock wtw execution

 // until ftw is finished.

 nb1 = gr0;

 // Copy the Shadow Matrix contents to the Active Matrix.

 wtw;

.branch; // switch on the parallel vector instructions execution.

 // Make a second part of calculations.

 rep 32 with vsum , ram, 0; // These two instructions are

 // Store results in memory. // executed in parallel.

 rep 32 [ar5++gr5] = afifo; //

 // Return from the routine.

 return;

end ".text";

IImmpplleemmeennttaattiioonn ooff tthhee aallggoorriitthhmm oonn NNMM66440033

After the Active Matrix is loaded it is possible to start calculations
themselves. The source and result buffers are allocated in different memory
blocks at different data buses. In this case operations of the source data
reading and of the result data writing can be executed in parallel.

Each vector instruction contains internal loop counter that defines
elementary loops ranged from 1 to 32. The internal memory blocks depth
defines the maximum number of internal loops. The blocks can contain up
to 32 long words.

The size of processing buffers in our task is small enough to implement any
external loop.

Some lines of assembly text above need additional explanation.

Methods of Addressing
The instruction
rep 32 [ar4++gr4] = afifo;

stores 32 long words of result in memory and each cycle modifies the
address register with an increment value contained in ar4 gr4. The address
modification type used in the instruction is post-modification. First a 64-bit
word is stored into memory and after that address is modified.

The NeuroMatrix® NM6403 addresses to 32-bit words. There are two ways
to address 64-bit words. If you need to address neighbor 64-bit word, you
may use incremental addressing [ar0++]. In vector instructions it always
means add 2 to access next long word. If you need another regular method
of addressing you have to use increment by general-purpose register:
[ar4++gr4]. General-purpose register has to contain even value to access
only even addresses. For example, if you wish to access long word over
long word, should be equal to 4. It is shown in Fig. 5: gr4

Fig. 5 Modification of the address register in vector instruction.
the next long word the stepped over word the current long word

13AApppplliiccaattiioonn RReeppoorrtt
Fast Hadamard Transform

63 3231 0

ar4↑ +3 +2 +1 ar4↑
the address after modification the initial address

Implementation of the next five steps of FHT
As mentioned above Hadamard transform includes only operations of
summation and subtraction. Hence there is a possibility to use the processor
Active Matrix having divided it into 32 rows. The bit length of data coming
to input X is 2 bit. It is enough to store numbers and . 1,0 -1

Division of the Active Matrix into 32 rows allows executing 32 operations
of summation/subtraction in each column. When 16-bit data are processed
the Active Matrix is divided into 4 columns. That’s why it is possible to
execute 128 operations of summation/subtraction by one cycle (see Fig. 6).

IImmpplleemmeennttaattiioonn ooff tthhee aallggoorriitthhmm oonn NNMM66440033
Fig. 6 The Active Matrix configuration to perform 128 arithmetic operations per
cycle.

The Active Matrix
ram → input X 15 0 15 0

-1 ... 1 62 → a31N+3 a31N+2 a31N+1 a31N

63

1 ... 1 60 → a30N+3 a30N+2 a30N+1 a30N

1 ... 1 58 → a29N+3 a29N+2 a29N+1 a29N

-1 ... 1 56 → a28N+3 a28N+2 a28N+1 a28N

1 ... 1 54 → a27N+3 a27N+2 a27N+1 a27N

-1 ... 1 52 → a26N+3 a26N+2 a26N+1 a26N

-1 ... 1 50 → a25N+3 a25N+2 a25N+1 a25N

1 ... 1 48 → a24N+3 a24N+2 a24N+1 a24N

1 ... 1 46 → a23N+3 a23N+2 a23N+1 a23N

-1 ... 1 44 → a22N+3 a22N+2 a22N+1 a22N

-1 ... 1 42 → a21N+3 a21N+2 a21N+1 a21N

1 ... 1 40 → a20N+3 a20N+2 a20N+1 a20N

-1 ... 1 38 → a19N+3 a19N+2 a19N+1 a19N

1 ... 1 36 → a18N+3 a18N+2 a18N+1 a18N

1 ... 1 34 → a17N+3 a17N+2 a17N+1 a17N

-1 ... 1 32 → a16N+3 a16N+2 a16N+1 a16N

1 ... 1 30 → a15N+3 a15N+2 a15N+1 a15N

-1 ... 1 28 → a14N+3 a14N+2 a14N+1 a14N

-1 ... 1 26 → a13N+3 a13N+2 a13N+1 a13N

1 ... 1 24 → a12N+3 a12N+2 a12N+1 a12N

-1 ... 1 22 → a11N+3 a11N+2 a11N+1 a11N

1 ... 1 20 → a10N+3 a10N+2 a10N+1 a10N

1 ... 1 18 → a9N+3 a9N+2 a9N+1 a9N

-1 ... 1 16 → a8N+3 a8N+2 a8N+1 a8N

-1 ... 1 14 → a7N+3 a7N+2 a7N+1 a7N

1 ... 1 12 → a6N+3 a6N+2 a6N+1 a6N

1 ... 1 10 → a5N+3 a5N+2 a5N+1 a5N

-1 ... 1 8 → a4N+3 a4N+2 a4N+1 a4N

1 ... 1 6 → a3N+3 a3N+2 a3N+1 a3N

-1 ... 1 4 → a2N+3 a2N+2 a2N+1 a2N

-1 ... 1 2 → aN+3 aN+2 aN+1 aN

1 ... 1 0 → a3 a2 a1 a0 0

32th word → 1th word 63 ↓ ↓ ↓ ↓ 0

b31N+3 b31N+2 b31N+1 b31N 32th word
...
b3 b2 b1 b0 1th word

the result is in afifo

The main question is how to provide interaction of all 32 rows of the matrix.
Let's look at the following table:

Tab. 2 Connections between elements of five sequential steps of FHT.
Step 3 Step 4 Step 5 Step 6 Step 7 Step 8
1

14 AApppplliiccaattiioonn rreeppoorrtt
Fast Hadamard Transform

1 + 2 1 + 3 1 + 5 1 + 9 1 + 17

2 1 - 2 2 + 4 2 + 6 2 + 10 2 + 18

3 3 + 4 1 - 3 3 + 7 3 + 11 3 + 19

IImmpplleemmeennttaattiioonn ooff tthhee aallggoorriitthhmm oonn NNMM66440033

15AApppplliiccaattiioonn RReeppoorrtt
Fast Hadamard Transform

4 3 - 4 2 - 4 4 + 8 4 + 12 4 + 20

5 5 + 6 5 + 7 1 - 5 5 + 13 5 + 21

6 5 - 6 6 + 8 2 - 6 6 + 14 6 + 22

7 7 + 8 5 - 7 3 - 7 7 + 15 7 + 23

8 7 - 8 6 - 8 4 - 8 8 + 16 8 + 24

9 9 + 10 9 + 11 9 + 13 1 - 9 9 + 25

10 9 - 10 10 + 12 10 + 16 2 - 10 10 + 26

11 11 + 12 9 - 11 11 + 15 3 - 11 11 + 27

12 11 - 12 10 - 12 12 + 16 4 - 12 12 + 28

13 13 + 14 13 + 15 9 - 13 5 - 13 13 + 29

14 13 - 14 14 + 16 10 - 16 6 - 14 14 + 30

15 15 + 16 13 - 15 11 - 15 7 - 15 15 + 31

16 15 - 16 14 - 16 12 - 16 8 - 16 16 + 32

17 17 + 18 17 + 19 17 + 21 17 + 25 1 - 17

18 17 - 18 18 + 20 18 + 22 18 + 26 2 - 18

19 19 + 20 17 - 19 19 + 23 19 + 27 3 - 19

20 19 - 20 18 - 20 20 + 24 20 + 28 4 - 20

21 21 + 22 21 + 23 17 - 21 21 + 29 5 - 21

22 21 - 22 22 + 24 18 - 22 22 + 30 6 - 22

23 23 + 24 21 - 23 19 - 23 23 + 31 7 - 23

24 23 - 24 22 - 24 20 - 24 24 + 32 8 - 24

25 25 + 26 25 + 27 25 + 29 17 - 25 9 - 25

26 25 - 26 26 + 28 26 + 30 18 - 26 10 - 26

27 27 + 28 25 - 27 27 + 31 19 - 27 11 - 27

28 27 - 28 26 - 28 28 + 32 20 - 28 12 - 28

29 29 + 30 29 + 31 25 - 29 21 - 29 13 - 29

30 29 - 30 30 + 32 26 - 30 22 - 30 14 - 30

31 31 + 32 29 - 31 27 - 31 23 - 31 15 - 31

32 31 - 32 30 - 32 28 - 32 24 - 32 16 - 32

Note In this table numbers in every column refer to the numbers of cells of the
previous step (column).

From Tab. 2 you can see that it is possible to express values of elements
after 8th step of FHT through the values of elements after 3rd step of FHT.

For example let’s see how the value of the 7th cell at the 8th step is expressed
through the values of the cells at the 3rd step (see the marked cells).

The value of the 7th cell at the 8th step is recorded as the sum of the values of
the 7th and the 23rd cells of the 7th step. Each of these cells is expressed in
the same manner through the values of the cells of the 6th step, etc.

In the result the value of the 7th cell after 8 steps of FHT is expressed
through values of the cells after 3 steps of FHT in the following way:
b7 = a1+a2-a3-a4-a5-a6+a7+a8+a9+a10-a11-a12-a13-a14+a15+a16+
 a17+a18-a19-a20-a21-a22+a23+a24+a25+a26-a27-a28-a29-a30+a31+a32

IImmpplleemmeennttaattiioonn ooff tthhee aallggoorriitthhmm oonn NNMM66440033

The same can be expressed by a 63-bit constant:
05FF55FF55FF55FF5hl

where 2 bits are assigned for each sign.

The scheme of data processing differs from the previous one because we
load data into the Active Matrix instead of weights as we did above.

We make calculations of five steps of FHT in the following order:

• Load weights from external memory into ; ram

• Load 32 even long words of input data into → ShM → ActM; wfifo

• Load 32 odd long words of input data into wfifo → ShM. In the same
instruction make calculations of even words in parallel;

• Store even words of the result in memory.

• Make calculations of odd words and store the result in memory.

The data processing scheme used in this routine is presented in Fig. 7:

Fig. 7 Scheme of data processing in NM6403 for 5 parallel steps of FHT.

NeuroMartix® NM6403

MemoryafifoMemory wfifo
Shadow
matrix

Active
matrix

ram (weights)

wtwftw

Making the calculations
The following assembly text block defines the most important part of the
routine that calculates next five steps of Hadamard transform:

// Section of source code.

begin ".text"

<_Steps_4_8>

.branch; // switch on the parallel vector instructions execution.

 // Load the address of weights array | Init gr0 with zero.

 ar6 = M_4_8 with gr0 = false;

 // Load the columns configuration of the Shadow Matrix.

 gr2 = 80008000h;

 // Load the rows configuration of the Shadow Matrix.

 sb = 0FFFFFFFFh;

 // Copy the columns configuration into nb1 | gr0 = 1;

 nb1 = gr2 with gr0++;

16 AApppplliiccaattiioonn rreeppoorrtt
Fast Hadamard Transform

IImmpplleemmeennttaattiioonn ooff tthhee aallggoorriitthhmm oonn NNMM66440033

17AApppplliiccaattiioonn RReeppoorrtt
Fast Hadamard Transform

 // Load the address of source buffer | gr0 = 2;

 ar0 = [--ar5] with gr0 <<= 1;

 // ar1 points to the source buffer address+2 (next long word)| gr1 = 4

 ar1 = ar0 + gr0 with gr1 = gr0 << 1;

 // Load the address of destination buffer | gr4 = 2;

 ar4 = [--ar5] with gr4 = gr0;

 // ar5 points to the destination buffer address + 2 | gr5 = 4

 ar5 = ar4 + gr4 with gr5 = gr1;

 // gr0 = 4 | gr4 = 4 <- Increments to access odd/even long words.

 gr0 = gr1 with gr4 = gr1;

 // Load source data to wfifo -> ShM -> ActM

 rep 32 wfifo = [ar0++gr0], ftw, wtw;

 // Load weights to ram; // These two instructions

 rep 32 ram = [ar0++]; // are executed in parallel.

 // Load next part of source data to wfifo -> ShM | Make calculations.

 rep 32 wfifo = [ar1++gr1], ftw with vsum , ram, 0;

 // Store results in memory. // These two instructions

 rep 32 [ar4++gr4] = afifo; // are executed in parallel.

 // This part of code is used to step over the silicon bug.

.wait; // switch off the parallel vector instructions execution.

 // Copy the same constant to nb1 to lock wtw execution

 // until ftw is finished.

 nb1 = gr2;

 // Copy the Shadow Matrix contents to the Active Matrix.

 wtw;

.branch; // switch on the parallel vector instructions execution.

 // Make calculations.

 rep 32 with vsum , ram, 0; // These two instructions

 // Store results in memory // are executed in parallel.

 rep 32 [ar5++gr5] = afifo;

 // Return from the routine.

 return;

.wait;

end ".text";

18 AApppplliiccaattiioonn rreeppoorrtt
Fast Hadamard Transform

CCoonncclluussiioonn

Full source codes of the application and build utilities are available. You
can find them in NEURO\EXAMPLES\FHT directory of installed
NeuroMatrix® NM6403 SDK or please visit our web site
http://www.module.ru.

The NeuroMatrix® NM6403 architecture is suitable for FHT. It takes 349
cycles to calculate 256-point FHT including C calling overhead.

To make calculations of 256-point FHT radix-2 it takes 2048 arithmetic
operations. It means that the effective performance of the processor is:

(8 operations * 256 elements) / 349 cycles = ~5.8 arithmetic operations per
cycle.

From the other hand the real calculations are differ from the theory. The
first step is based on radix-8 calculations; the second one is on radix-32.
The total number of arithmetic operations is more than was estimated above.

It can be evaluated in the following way: in the routine Steps_1_3 eight
arithmetic operations were made over each element of data, in the routine
Steps_4_8 – thirty-two operations. The total number of operations per one
element is 8 + 32 = 40, so the real performance of the processor is:

(40 operations * 256 elements) / 349 cycles = ~29.3 arithmetic operations
per cycle.

Tab. 3 The performance of NeuroMatrix® NM6403 on 256-point FHT.

Description Number of
arithmetic

operations per
cycle

Number of arithmetic
operations per second

at 50 MHz

Effective performance 5.8 2,9*108

Operational performance 29.3 1,4*109

Here is the comparative table of time spent for 21-step Hadamard transform
execution according to the testing results:

Tab. 4 Performance comparison results on 221 FHT.

Processor Frequency Execution Time

Pentium II 300 MHz 2.58 sec

NM6403 40 MHz 0.42 sec

Alfa 21164 533 MHz 0.33 sec

CCoonncclluussiioonn

19AApppplliiccaattiioonn RReeppoorrtt
Fast Hadamard Transform

Bibliography

1) RC Module "NeuroMatrix® NM6403. Architectural Overview".
http://www.module.ru/files/archover.pdf

2) RC Module. " NeuroMatrix® NM6403 SDK. Assembly Language
Overview". http://www.module.ru/files/asmover.pdf

®

©RC Module, 1999

All rights reserved.
Neither the whole nor any part of the information contained in, or the
product described in this overview may be adapted or reproduced in
any form except with the prior written permission of the copyright
holder.

Research Centre Module
Box: 166, Moscow, 125190, Russia
Tel: +7 (095) 152-9335

RC Module reserves the right to make changes without further notices
to product herein to improve reliability, function or design. RC
Module shall not be liable for any loss or damage arising from the use
of any information in this overview or any error or omission in such
information, or any incorrect use of the product.

Fax: +7 (095) 152-4661
E-Mail: postmast@module.ru
WWW: http://www.module.ru

Printed in Russia Data of issue: 1999 April, 7

	 Introduction
	Brief Description of Hadamard Transform
	Algorithm Implementation in C Language
	Implementation of the algorithm on NM6403
	Concept of calculations
	Implementation of the first three steps of FHT
	Loading of the Active Matrix
	Making the calculations
	Methods of Addressing

	Implementation of the next five steps of FHT
	Making the calculations

	Conclusion
	Bibliography

