

®

NM6403 Software Development Kit

NNeeuurrooMMaattrriixx®® NNMM66440033
AAsssseemmbbllyy LLaanngguuaaggee OOvveerrvviieeww

 Version 1.0

 Assembly Language Overview
Version 1.0

Module® and NeuroMatrix® are registered trademarks of JSC Research Center Module.
All other trademarks are the exclusive property of their respective owners.

Assembly Language Overview
Version 1.0

CCoonntteennttss

 NEUROMATRIX NM6403 ARCHITECTURE OVERVIEW1-1
1.1 INTRODUCTION ..1-3
1.2 EXTERNAL PROCESSOR INTERFACE ...1-3
1.3 COMMON DESCRIPTION OF INTERNAL PROCESSOR STRUCTURE ...1-4
1.3.1 Brief Description of RISC-core Components ..1-5
1.3.2 Brief Description of Vector Unit Architecture ..1-8

1.4 DATA REPRESENTATION IN VECTOR UNIT...1-11
1.5 MAIN COMPUTATION NODES OF VECTOR UNIT..1-11
1.5.1 Data Sources and Paths...1-11
1.5.2 Weighted Accumulation Procedure ..1-12
1.5.3 Calculations in the Vector ALU ...1-15
1.5.4 Mask Application Procedure ...1-17
1.5.5 Application of Activation Functions ...1-19
1.5.6 Cyclic Shift Right One Bit..1-20
1.5.7 Data Processing Order in Vector Unit...1-22

 ASSEMBLY LANGUAGE SYNTAX OVERVIEW.....................2-1
2.1 RESERVED WORDS..2-3
2.2 ASSEMBLER FILE STRUCTURE..2-4
2.3 SECTIONS ...2-5
2.3.1 Code Section .. 2-6
2.3.2 Initialized Data Section ... 2-6
2.3.3 Non-Initialized Data Section ...2-8
2.3.4 Space Between Sections..2-8

2.4 CONSTANTS ..2-8
2.4.1 Constants Representation Formats ..2-8
2.4.2 Constant Expression...2-11
2.4.3 Definition and Use of Constants ...2-12

2.5 LABEL ... 2-13
2.5.1 Label Declaration.. 2-13
2.5.2 Label Definition ... 2-14
2.5.3 References to a Label...2-14
2.5.4 Types of Binding and Label Definition Area..2-15

2.6 VARIABLES ..2-18
2.6.1 Obtaining the Variable Address ..2-19
2.6.2 Obtaining the Variable Value ..2-19
2.6.3 Fundamental Types ..2-19
2.6.4 Compound Types..2-19
2.6.5 Initialization of Variables ... 2-22
2.6.6 Variable Definition Area ..2-23

CCoonntteennttss

ii Assembly Language Overview
Version 1.0

2.6.7 File Areas for Variables Declaration, Definition and Initialization 2-24
2.7 ASSEMBLER DIRECTIVES ... 2-25
2.7.1 Directive .align .. 2-27
2.7.2 Directives .branch and .wait.. 2-28
2.7.3 Directives .if and .endif ... 2-29
2.7.4 Directives .repeat and .endrepeat... 2-30
2.7.5 Directives of Debugging Information... 2-30

2.8 PSEUDO FUNCTIONS.. 2-36
2.8.1 Function loword .. 2-37
2.8.2 Function hiword .. 2-37
2.8.3 Function sizeof.. 2-37
2.8.4 Function offset .. 2-38
2.8.5 Functions float and double.. 2-39

2.9 USING MACROS... 2-40
2.9.1 Purpose of Macros.. 2-40
2.9.2 Syntax of Macros .. 2-40
2.9.3 Description.. 2-40
2.9.4 Using Label in Macros .. 2-41
2.9.5 Importing Macros from Marco Library... 2-42

 REGISTERS 3-1
3.1 PRIMARY REGISTER FILE ... 3-3
3.1.1 Address Registers .. 3-3
3.1.2 General-Purpose Registers .. 3-4
3.1.3 Register Pairs ... 3-4

3.2 PERIPHERAL CONTROL REGISTER FILE .. 3-5
3.2.1 Register gmicr... 3-6
3.2.2 Registers of Communication Port Control (ica, icc) (oca, occ) 3-13
3.2.3 Register intr .. 3-19
3.2.4 Register lmicr.. 3-23
3.2.5 Register pc.. 3-24
3.2.6 Register pswr.. 3-25
3.2.7 Timer Counters t0 and t1 .. 3-32

3.3 VECTOR REGISTER FILE .. 3-33
3.3.1 Registers f1cr and f2cr.. 3-34
3.3.2 Register nb1(nb2) ... 3-40
3.3.3 Register sb (sb1 and sb2)... 3-44
3.3.4 Register vr .. 3-48
3.3.5 Register-Container afifo.. 3-49
3.3.6 Logical Register-Container data ... 3-55
3.3.7 Register-Container ram .. 3-56
3.3.8 Register-Container wfifo ... 3-58

 FORMAT OF PROCESSOR INSTRUCTIONS 4-1
4.1 TYPES OF SCALAR INSTRUCTIONS.. 4-5

CCoonntteennttss

iiiAssembly Language Overview
Version 1.0

4.2 TYPES OF VECTOR INSTRUCTIONS ...4-6
4.3 STRUCTURE OF PROCESSOR INSTRUCTION WORD ...4-6

 ASSEMBLY INSTRUCTION SET SUMMARY5-1
5.1 NM6403 SCALAR INSTRUCTIONS SUMMARY...5-3
5.1.1 No Operation Command...5-3
5.1.2 Load Commands... 5-4
5.1.3 Store Commands.. 5-7
5.1.4 Stack Access Commands...5-10
5.1.5 Register Copy Commands..5-12
5.1.6 Register Initialization with Constant..5-15
5.1.7 Address Register Modification Commands...5-16
5.1.8 Register pswr Modification Commands ..5-17
5.1.9 Branch Commands ...5-17
5.1.10 Set of Basic Scalar Operations...5-22
5.1.11 Arithmetic Operations ...5-23
5.1.12 Logical Operations..5-24
5.1.13 Flags Setting Operations ..5-25
5.1.14 Shift Operations .. 5-27

5.2 VECTOR INSTRUCTIONS ...5-29
5.2.1 Data Load and Store in Vector Instructions ..5-29
5.2.2 Vector No Operation Commands..5-31
5.2.3 Vector Logical Operations ..5-32
5.2.4 Vector Arithmetic Operations..5-33
5.2.5 Mask Application Operations ..5-34
5.2.6 Weighted Accumulation ..5-35
5.2.7 Activation Operations..5-36
5.2.8 Weights Loading ... 5-38
5.2.9 Store the Vector Unit Control Registers..5-39

Assembly Language Overview
Version 1.0

FFiigguurreess

Figure 1-1. Scheme of NM6403 External Processor Interface...1-3

Figure 1-2. NeuroMatrix® NM6403 Block Diagram..1-4

Figure 1-3. NeuroMatrix NM6403 RISC-Core Block Diagram..1-7

Figure 1-4. Scheme of NM6403 Vector Unit...1-8

Figure 1-5 Format of Packed Data Word ...1-11

Figure 1-6. Weighted Accumulation Scheme ...1-13

Figure 1-7. Weighted Accumulation on the Active Matrix...1-14

Figure 1-8. Data Path Through the OU in Case of Weighted Accumulation1-15

Figure 1-9. Data Processing on Vector ALU ..1-16

Figure 1-10. Addition of Two Packed Words on the Vector ALU1-17

Figure 1-11. Input and Output Data Streams of Mask Application Unit..........................1-17

Figure 1-12. Logical Mask Application Precedure..1-18

Figure 1-13. Types of Hardware Implemented Activation Functions..............................1-19

Figure 1-14. Bitwise Permutation on the Active Matrix...1-21

Figure 1-15. Data Processing Order in the Vector Unit ..1-22

Figure 2-1. Assembler File Structure..2-5

Figure 3-1. Types of Embedded Activation Functions..3-35

Figure 3-2. Division of a 64-bit Word into Elements by f1cr (f2cr)3-36

Figure 3-3. The Shadow and the Active Matrixes of the Vector Unit..............................3-41

Figure 3-4. Split of the Shadow(Active) Matrix into Columns by the nb1(nb2) Register.3-42

Figure 3-5. Register sb and its Component Registers sb1 and sb2...............................3-44

Figure 3-6. Active Matrix Division into Rows Using sb(sb2) Register.............................3-46

Figure 3-7. Interaction of afifo with Other Devices of the NM6403.................................3-50

Figure 3-8. Contents of afifo on Different Stages of Vector Instruction Execurion3-53

Figure 3-9. Load Weights from External Memory...3-59

Figure 3-10. Load Weights to the Active Matrix ...3-62

Figure 4-1. Structure of NM6403 Mashine Instruction Word ..4-7

Assembly Language Overview
Version 1.0

TTaabblleess

Table 2-1. Set of Reserved Words of NM6403 Assembler...2-3

Table 2-2. Set of Debug Information Reserved Words...2-3

Table 2-3. Set of Registers of NeuroMatrix NM6403..2-4

Table 2-4. Summary of Numerical Constant Expression Operations2-11

Table 2-5. Summary Table of Assembly Directives (Part 1)...2-26

Table 2-6. Summary Table of Assembly Directives (Part 2)...2-26

Table 2-7. The DIE Attribute Forms. ..2-31

Table 2-8. The relation of the DIE attribute values with their form.2-32

Table 2-9. Summary Table of Assembly Pseudo Functions...2-36

Table 3-1. Primary Register File of NeuroMatrix NM6403..3-3

Table 3-2. Peripheral Control Register File of NeuroMatrix NM6403...............................3-5

Table 3-3. Global Memory Interface Control Register (gmicr)..3-6

Table 3-4. Division of Global Bus Address Space into Banks 0/1 According to BOUND.3-7

Table 3-5. Memory Page Sizes According to Field PAGE(0,1) ..3-7

Table 3-6. Phases of Memory Access Cycle..3-9

Table 3-7. Format of Fields TIME0 and TIME1 of gmicr(lmicr) Register for SRAM3-10

Table 3-8. Format of Fields TIME0 and TIME1 of gmicr(lmicr) Register for DRAM3-10

Table 3-9. Duration of RAS Signal Active Level..3-11

Table 3-10. Register of Interrupt Request and DMA Request (INTR)3-19

Table 3-11. Division of Local Bus Address Space into Banks 0/1 According to BOUND...3-
24

Table 3-12. Processor State Word (pswr) ..3-25

Table 3-13. Output Signals on TIMER pin..3-27

Table 3-14. Timer Т0(T1) Operation Modes...3-30

Table 3-15. Vector Register File of NeuroMatrix NM6403..3-34

Table 3-16. List of Thresholds for 8-bit Data ..3-36

Table 3-17. Constants Frequently Used for the f1cr(f2cr) Register Initialization............3-40

Table 3-18. The Constants Frequently Used for the nb1 Register Initialization3-44

Table 3-19. The Most Frequently Used Split Constants for sb Initialization...................3-47

Table 4-1. Position of Different Types of Commands in a Scalar Instruction4-5

Table 4-2. Position of Different Types of Commands in Vector Instruction......................4-6

Table 4-3. The Complete List of NeuroMatrix NM6403 Mashine Instructions4-7

Table 5-1. List of Read/Write Accessible Registers and Register Pairs.........................5-12

TTaabblleess

ii Assembly Language Overview
Version 1.0

Table 5-2. List of Write Accessible Registers...5-13

Assembly Language Overview
Version 1.0

Preface

About This Manual
This manual covers the following topics:

• architecture of the processor and features of its main functional nodes
from programmer’s point of view;

• description of all registers;

• use of internal memory blocks of Vector execution Unit (VU) and their
features;

• description of syntax of assembly language with examples;

• structured list of all scalar and vector instructions of NM6403;

Organization
This manual is organized into the following chapters:

Chapter 1 NeuroMatrix® NM6403 Architecture Overview

 Gives reference information on the NM6403 structure.
Contains description of all main computation nodes of
the processor.

Chapter 2 Assembly Language Syntax Overview

 Gives comprehensive information on assembly program
structure and rules showing examples of different
syntax structures.

Chapter 3 Registers

 Gives reference information on different types of
registers, describes fields of control registers, vector
registers, shows examples of registers use in different
processor instructions.

Chapter 4 Format of Processor Instructions

 Gives reference information on the format of scalar and
vector instructions of the processor.

PPrreeffaaccee

2 Assembly Language Overview
Version 1.0

Chapter 5 Assembly Instruction Set Summary

 Contains a comprehensive set of assembly instructions,
gives their syntax, position of commands and operations
in an assembly instruction, shows examples of assembly
instructions.

Typographical Conventions
The following typographical conventions are used in this manual:
Courier Denotes text that may be entered at the keyboard:

commands, file and program names, and assembler and
C++ source. This is most often used in syntax
descriptions.

Courier Shows text that must be substituted with user-supplied
information.

Times
or
Times

Highlights important notes.

//Times Shows comments to assembler and C++ source.

Note Boxes like this contain information on significant notes and comments to
the context.

Feedback

Feedback on This Manual
If you have feedback on this manual, please contact your supplier,
giving:

• the manual’s title;

• the manual’s document number;

• the page number(s) to which your comments refer;

• a concise explanation of the comment.

General suggestions for additions and improvements are also welcome.

Feedback on NeuroMatrix® NM6403 Software Development Kit

If you have comments or suggestions about the NeuroMatrix® NM6403
Software Development Kit, please contact your supplier or, giving:

PPrreeffaaccee

3Assembly Language Overview
Version 1.0

• the platform and release of the NeuroMatrix® NM6403 software tools
you are using;

• a small sample code fragment which illustrates your comment;

• precise description of your comment or suggestion.

Mail your remarks to the address: nm-support@module.ru

PPrreeffaaccee

4 Assembly Language Overview
Version 1.0

Assembly Language Overview
Version 1.0

1 NeuroMatrix NM6403 Architecture Overview

1.1 INTRODUCTION ..1-3
1.2 EXTERNAL PROCESSOR INTERFACE..1-3
1.3 COMMON DESCRIPTION OF INTERNAL PROCESSOR STRUCTURE...1-4
1.3.1 Brief description of RISC-core components..1-5
1.3.2 Brief description of Vector Unit architecture ...1-8

1.4 DATA REPRESENTATION IN VECTOR UNIT ...1-11
1.5 MAIN COMPUTATION NODES OF VECTOR UNIT ..1-11
1.5.1 Data sources and paths..1-11
1.5.2 Multiplication and accumulation procedure...1-12
1.5.3 Calculations in the Vector ALU ...1-15
1.5.4 Mask application procedure..1-17
1.5.5 Application of activation functions...1-19
1.5.6 Cyclic shift one bit right ... 1-20
1.5.7 Data processing order in Vector Unit ..1-22

NNeeuurrooMMaattrriixx NNMM66440033 AArrcchhiitteeccttuurree OOvveerrvviieeww

1-2 Assembly Language Overview
Version 1.0

NNeeuurrooMMaattrriixx NNMM66440033 AArrcchhiitteeccttuurree OOvveerrvviieeww

1-3Assembly Language Overview
Version 1.0

1.1 Introduction
Before describing the NM6403 assembly language it is necessary to
introduce some concepts dealing with the processor architecture to be
referred to later in this manual.

The processor architecture, illustrated below, reflects a programmer’s
point of view. Therefore some concepts that cannot be managed from
source code are missing.

1.2 External Processor Interface
Processor NM6403 contains four main channels to transmit data to/from
peripheral devices. (see Figure 1-1).

Figure 1-1. Scheme of NM6403 External Processor Interface

communication
port 1

TIMER
pin

NeuroMatrix® NM6403

communication
port 0

Local
data bus

64

8

External
interrupt

Global
data bus

64

8

Global and local data buses are used to access external memory. Memory
blocks connected to the global bus are referred to as global memory.
Memory blocks connected to the local bus are referred to as local
memory.

In addition to external memory access the processor can send and receive
data through two communication ports hardware compatible to
TMS320C4х. More detailed description of communication ports and
their controls is given in paragraph 3.2.2 on page 3-13.

Processor NM6403 does not have internal memory except some special
FIFO-like buffers that are used in vector operations. These memory
blocks are described later in this manual.

NNeeuurrooMMaattrriixx NNMM66440033 AArrcchhiitteeccttuurree OOvveerrvviieeww

1-4 Assembly Language Overview
Version 1.0

1.3 Common Description of Internal Processor Structure
Processor NM6403 consists of the following internal blocks (Figure 1-2):

• Scalar RISC-core;

• Vector execution Unit (VU) ;

• DMA-coprocessors, managing communication ports (see paragraph
3.2.2 on page 3-13);

• Timers (see paragraph 3.2.7 on page 3-32);

• Global and Local Memory Interface Units managed by control
registers to access different types of external memory (see paragraph
3.2.1 on page 3-6 and paragraph 3.2.4 on page 3-23).

Figure 1-2. NeuroMatrix® NM6403 Block Diagram

Vector
Execution Unit

(VU)

LOCAL ADDRESS BUS

Scalar RISC-core

INPUT BUS #1

INPUT BUS #2

OUTPUT BUS

Lo
ca

l m
em

or
y

in
te

rfa
ce

 (L
M

I)

G
lo

ba
l m

em
or

y
in

te
rfa

ce
 (G

M
I)

GLOBAL ADDRESS BUS

Communication
port 1

DMA-coprocessor DMA-coprocessor

Communication
port 0

The Vector execution Unit (VU), which is the main feature of
NeuroMatrix® NM6403, operates concurrently with scalar RISC-core
and two DMA-coprocessors. This 64-bit engine provides highly parallel
operations, allowing simultaneous execution of up to 2048 operations in
a single clock cycle. Its architecture gives flexibility of choice in
performance/accuracy ratio. Depending on data size, vectors are from
one to sixty-four elements long.

NNeeuurrooMMaattrriixx NNMM66440033 AArrcchhiitteeccttuurree OOvveerrvviieeww

1-5Assembly Language Overview
Version 1.0

The Vector Unit operations are performed on multiple data elements by a
single instruction. This is often referred to as SIMD (single instruction,
multiple data) parallel processing.

Processor NM6403 has a 64-bit external memory interface. It allows
access to one 64-bit word per transaction at each memory bus.
Depending on memory access time up to two 64-bit words per cycle can
be transmitted.

The instruction set of NM6403 consists of both 32-bit and 64-bit
instructions. If an instruction contains a 32-bit constant, it is referred to
as a 64-bit instruction. In other cases it is a 32-bit instruction.

The following strings are examples of 32-bit and 64-bit instructions of
NM6403:
ar0 = 80808080h; // 64-bit instruction (contains constant value)
gr0 = [ar0]; // 32-bit instruction.

More detailed information on the NM6403 instruction set can be found in
chapter 5.

1.3.1 Brief Description of RISC-core Components
RISC-core is used for address calculations and for basic operations over
general-purpose registers. It is also used to prepare data for the Vector
Unit. The NM6403 RISC-core diagram is shown in Figure 1-3.

RISC-core contains a primary register file that contains eight address
registers and eight general-purpose registers. In addition to the primary
register file there are peripheral control register file and vector register
file. The complete information on all NM6403 registers is given in
chapter 3.

RISC-core supports the following set of operations:

• different types of addressing with or without modification of address
registers;

• external memory access to read/write 32-bit and 64-bit words;

• all types of arithmetic and logical operations on general-purpose
registers with or without modification of condition flags;

• different types of shift operations at arbitrary bits ranged from 1 to 31;

• conditional/unconditional branches, including delayed branches;

• calls of subroutines with store of return address in stack, including
delayed calls;

• multistep multiplication;

• handling of timers;

NNeeuurrooMMaattrriixx NNMM66440033 AArrcchhiitteeccttuurree OOvveerrvviieeww

1-6 Assembly Language Overview
Version 1.0

• selection of external memory access time for different types of memory
by handling memory interface control registers;

• handling of the Vector Unit operation nodes configuration.

The complete set of scalar instructions can be found in paragraph 5.1 on
page 5-3.

NNeeuurrooMMaattrriixx NNMM66440033 AArrcchhiitteeccttuurree OOvveerrvviieeww

1-7Assembly Language Overview
Version 1.0

Figure 1-3. NeuroMatrix NM6403 RISC-Core Block Diagram

D
AG

2
P

R
O

G
R

A
M

SE
Q

U
EN

C
ER

R
AL

U

M
U

X

a
r
1 AU

1

a
r
0

a
r
2

a
r
3

p
c

M
U

X
M

U
X

a
r
5 AU

2

a
r
4

a
r
6

a
r
7
(
s
p
)

g
r
1

g
r
0

g
r
2

g
r
3

g
r
5

g
r
4

g
r
6

g
r
6 S
H

IF
TE

R

AL
U

O
U

TP
U

T
D

AT
A

BU
S

IN
PU

T
D

AT
A

BU
S

(W
EI

G
H

T
BU

S)

IN
P

U
T

IN
S

TR
U

C
TI

O
N

 B
U

S

G
LO

BA
L

AD
D

R
E

S
S

B
U

S

LO
C

AL
 A

D
D

R
E

SS
 B

U
S

D
A

G
1

TI
M

ER
S

BL
O

C
K

T1T0

C
O

N
TR

O
L

AN
D

ST
AT

E
R

EG
IS

TE
R

S
B

LO
C

K

i
n
t
r

p
s
w
r

l
m
i
c
r

g
m
i
c
r

NNeeuurrooMMaattrriixx NNMM66440033 AArrcchhiitteeccttuurree OOvveerrvviieeww

1-8 Assembly Language Overview
Version 1.0

1.3.2 Brief Description of Vector Unit Architecture
Vector Unit architecture is shown in Figure 1-4.

Figure 1-4. Scheme of NM6403 Vector Unit

Input Vector Data Bus

RAM

Mask Application Unit

Activation
Unit

Cyclic
Shifter VR

Vector ALU

WFIFO

AFIFO

Output Vector Data Bus

Activation
Unit

Shadow

Active
Matrix

OU

X Y

X

Y

Referring to Figure 1-2, the Input Vector Data Bus shown in Figure 1-4
is mapped to the Input Bus #1 and the Input Bus #2, the Output Vector
Data Bus is mapped to the Output Bus.

The central node of VU is Operation Unit (OU). It contains the
Active/Shadow Matrix block and the Vector ALU.

Operation Unit is used to process multiply adds, arithmetic and logical
operations, arbitrary permutation on vectors of packed data. Additional
calculation nodes of VU allow the user to perform of mask application

NNeeuurrooMMaattrriixx NNMM66440033 AArrcchhiitteeccttuurree OOvveerrvviieeww

1-9Assembly Language Overview
Version 1.0

operations, saturation and threshold linear transforms on vectors and
matrixes.

The Vector Unit consists of the following components:

• Active Matrix – an operation unit that performs multiply add and
permute operations. There are two control registers associated with
the Active Matrix. They specify its configuration. This means they
configure the number of rows and columns that the Active Matrix is
divided into. More detailed description of the Active Matrix and its
operation can be found in paragraph 1.5.2 on page 1-12;

• Shadow Matrix – an operation unit that is used for background load
of weights to the Active Matrix. While the Vector Unit performs
computations using current weights loaded into the Active Matrix, the
new part of weights is loaded into the Shadow Matrix. After new
weights are loaded it takes just one cycle to copy them to the Active
Matrix. There are two control registers associated with the Shadow
Matrix. They specify its configuration. This configuration can differ
from the configuration of the Active Matrix;

• Vector ALU –an operation unit that performs arithmetic and logical
calculations on packed words of data. Calculations are made on all
elements of a packed word at the same time. If overflow occurs as a
result of arithmetic operation the carry bit will be lost but will not
affect the neighbor element in the packed word. This means that there
is a “screen” between every two elements of the packed word that
doesn’t permit carry bits when overflow occurs. More detailed
description of the Vector ALU and its operation can be found in
paragraph 1.5.3. on page 1-15.

• Weights FIFO Buffer (wfifo) – a FIFO-like queue of thirty-two 64-
bit words. It is used to store weights that are transferred from external
memory to be loaded into the Shadow Matrix. It is treated as a transfer
buffer between external memory and the Shadow Matrix. Depending
on the Shadow Matrix configuration, more than one suite of weights
can be stored. More detailed description of wfifo and its features can
be found in paragraph 3.3.8 on page 3-58;

• Internal memory FIFO buffer (ram) – a FIFO-like queue of thirty-
two 64-bit words. It is used as one of the input buffers for the Active
Matrix or the Vector ALU. This means that data stored in ram can be
reused in calculations that are made on the Active Matrix or the
Vector ALU as many times as necessary. Internal memory FIFO
buffer can store up to thirty-two packed words loaded from external
memory. The main restriction is that all data stored in ram should be
used in calculations. More detailed description of ram and its features
can be found in paragraph 3.3.7 on page 3-56;

• Pseudo-buffer of data bus (data) – used to manage data coming
through the data bus when loading to ram or takes part in calculations
that are being made on the Active Matrix or the Vector ALU. It allows

NNeeuurrooMMaattrriixx NNMM66440033 AArrcchhiitteeccttuurree OOvveerrvviieeww

1-10 Assembly Language Overview
Version 1.0

the user to redirect data transferring through the data bus from
external memory to one of the inputs of the Operation Unit. Pseudo-
buffer is treated as the FIFO-like queue of thirty-two 64-bit words. It
is used as one of the input buffers for the Active Matrix or the Vector
ALU. More detailed description of data and its features can be found
in paragraph 3.3.6 on page 3-55;

• Accumulator FIFO buffer (afifo) - a FIFO-like queue of thirty-
two 64-bit words. The destination buffer of any operation in the
Vector Unit is afifo. It is a dual port FIFO. It may be used as one of
the input buffers for the Active Matrix or the Vector ALU as well.
Before the results of calculations in the Vector Unit become available
for the RISC-core they should be stored from afifo into external
memory. More detailed description of afifo and its features can be
found in paragraph 3.3.5 on page 3-49;

• Bias register (vr) – a 64-bit vector register that can be used as input
buffer Y for calculations made in the Active Matrix. It is treated as a
buffer filled with the same packed words. Bias register is available
from the RISC-code as a 64-bit read only register. More detailed
description of vr and its features can be found in paragraph 3.3.4 on
page 3-48;

• Activation units – units that apply saturation function or threshold
function to input vectors. They operate on packed words and
transform all elements in parallel. This transformation is also called
“activation”, meaning the activation units transform data before they
pass to the Active Matrix or the Vector ALU. More detailed
description of Activation units and their features can be found in
paragraph 1.5.5 on page 1-19;

• Mask Application Unit – the unit that applies mask to input vectors
of data. Mask Application Unit operates on packed words of data. It
has three inputs and two outputs, so it also called “switch 3→2”. More
detailed description of Mask Application Unit and its features can be
found in paragraph 1.5.4 on page 1-17;

• Cyclic Shifter right one bit – a unit that rotates right one bit packed
words of data coming through it. The Cyclic Shifter rotates a packed
word regardless of the word’s split, so the 0th bit become the 63rd one,
the 1st bit become the 0th one and so on. This unit is used to
compensate for inability of the Active Matrix to divide input data
passing through the input X into elements of odd bit length. More
detailed description of Cyclic Shifter unit and its features can be found
in paragraph 1.5.6 on page 1-20.

NNeeuurrooMMaattrriixx NNMM66440033 AArrcchhiitteeccttuurree OOvveerrvviieeww

1-11Assembly Language Overview
Version 1.0

1.4 Data Representation in Vector Unit
The term “vector” is used to describe 1D-array of uniform data
represented as a continuous block in memory. Matrix is an array of
vectors.

The Vector Unit processes only 64-bit data, so all its calculation nodes
are 64 bits long. It operates only on integer data that are concatenated
into 64-bit words (see Figure 1-5). The common representation of a 64-
bit word of packed data is represented in the following way:
D = {Dk...D1}

It contains k elements with total bit length equal to 64. Moreover, one
packed word D can contain data elements of different bit length. The
number of elements contained in one packed word depends on their bit
lengths and is ranged from 1 to 64.

Figure 1-5 Format of Packed Data Word

Dk ... D1 D0

063
Bits range

1.5 Main Computation Nodes of Vector Unit
This section contains more detailed description of all programmable
operation nodes of the Vector Unit and explanation on how the processor
performs the following operations:

• multiplication and accumulation, also called “weighted accumulation”;

• arithmetic and logical operations over packed words of data on the
Vector ALU;

• mask application to input vectors;

• application of activation functions;

• rotation right one bit of packed words of data coming through the path
X to the Active Matrix or the Vector ALU.

Moreover, this section contains information on the transform order when
data are coming through the different operation units of the Vector Unit
activated by a vector instruction.

1.5.1 Data Sources and Paths
Data can be loaded to the processor from local external memory
connected to the local data bus and from global external memory
connected to the global data bus. There are three internal FIFO buffers
that also take part in data processing on the Vector Unit. They are ram,

NNeeuurrooMMaattrriixx NNMM66440033 AArrcchhiitteeccttuurree OOvveerrvviieeww

1-12 Assembly Language Overview
Version 1.0

afifo, and wfifo. To manage data coming directly from the external
memory, data pseudo-buffer is used (see paragraph 3.3.6 on page 3-55).

Weights FIFO buffer (wfifo) is designed to store weights for the Active
Matrix, while other buffers (ram, data, afifo) are used as source
buffers for data processing. When the processor starts calculations, ram
and afifo are empty. To use ram data should first be loaded to it. After
that, the data can be used as many times as desired until a new block of
data replaces the current one.

Results of any calculations on the Vector Unit are stored into afifo.
They can be moved to external memory or/and can take part in the next
step of calculations. Accumulation buffer is a dual port FIFO; it allows,
for example, movement of data to external memory and retrieval of new
data from the Vector ALU at the same time.

Data pass to the Operation Unit through two input channels, which are X
and Y. Each of the source buffers (data, ram or afifo) can be
connected to one or both data paths.

For example, a vector of packed 64-bit words stored in ram can be
passed to the Active Matrix along the path X or Y, or along the X and Y
at the same time.

Vector bias register vr can also be used as a data source for the input Y
(see 3.3.4 on page 3-48).

In addition to data, ram and afifo the additional device called “zero”
device can also take part in calculations as a data source. If this device is
used in a vector instruction, null vectors pass through one of the inputs of
the Active Matrix and the Vector ALU.

1.5.2 Weighted Accumulation Procedure
Weighted accumulation procedure is performed on the Active Matrix and
the Vector ALU, which are the most significant operation nodes of the
NM6403 Vector Unit. This procedure is represented schematically in
Figure 1-6.

NNeeuurrooMMaattrriixx NNMM66440033 AArrcchhiitteeccttuurree OOvveerrvviieeww

1-13Assembly Language Overview
Version 1.0

Figure 1-6. Weighted Accumulation Scheme

×

+

×

+

×

+

×

+

×

+

×

+

XN

X2

X1

×

+

×

+

×

+
ZM Z2 Z1

YM Y2 Y1

WM,N W2,N W1,N

W2,2WM,2 W1,2

WM,1 W2,1 W1,1

The formula of this transform can be represented as follows:

),,...,1;,...,1(,
1

NjMiWXYZ ij

N

j
jii ==+= ∑

=

where Zi - an element of an output vector.

 Xj - an element of packed word of data coming to the Active
Matrix through the input X.

 Yi - partial sum, accumulated on previous steps of calculations.

 Wij - weight that is loaded into the related cell of the Active
Matrix.

 M - number of columns of the Active Matrix.

 N - number of rows of the Active Matrix.

The Active Matrix has an input that is connected to the path X (see
Figure 1-7). It is used to load 64-bit words of data from external memory
(data) or from internal FIFOs (ram or/and afifo) into the Active
Matrix to execute a weighted accumulation procedure (Σ). The results of
calculation pass to the Vector ALU to make final addition to the results
of previous calculations coming along the path Y(Y + Σ).

If the Active Matrix is used by a vector instruction the interpretation of
data moving along the path X differs from that of data moving along the
path Y.

NNeeuurrooMMaattrriixx NNMM66440033 AArrcchhiitteeccttuurree OOvveerrvviieeww

1-14 Assembly Language Overview
Version 1.0

Every element of the packed words of data passing through the input X
multiplies by every cell of the related row of the Active Matrix. The
results of multiplication are accumulated in every column. The results of
weighted accumulation are added to the data moving along the path Y in
the Vector ALU.

Before starting calculations on the Active Matrix, the Shadow/Active
Matrix configuration must be defined and weights should be loaded. The
procedure of weights loading is described in paragraph 3.3.8 on page 3-
58.

Active Matrix rows number is configured by the sb2 register. The same
register defines the structure of packed 64-bit words passing through the
input of the Active Matrix that is connected to the path X. The 32-bit
constant loaded into sb2 configures division of input data into elements.
More detailed description of the sb2 register can be found in paragraph
3.3.3 on page 3-44.

Figure 1-7. Weighted Accumulation on the Active Matrix

Input X The Active Matrix
X7 ... X7 63 → X7*W37 X7*W27 X7*W17 X7*W07 63

X6 ... X6 → X6*W36 X6*W26 X6*W16 X6*W06

X5 ... X5 → X5*W35 X5*W25 X5*W15 X5*W05

X4 ... X4 → X4*W34 X4*W24 X4*W14 X4*W04

X3 ... X3 → X3*W33 X3*W23 X3*W13 X3*W03

X2 ... X2 → X2*W32 X2*W22 X2*W12 X2*W02

X1 ... X1 → X1*W31 X1*W21 X1*W11 X1*W01

X0 ... X0 0 → X0*W30 X0*W20 X0*W10 X0*W00 0
32 1 63 ↓ ↓ ↓ ↓ 0

32 ∑
=

7

0
3W*X

i
ii ∑

=

7

0
2W*X

i
ii ∑

=

7

0
1W*X

i
ii ∑

=

7

0
0W*X

i
ii

...

1 ∑
=

7

0
3W*X

i
ii ∑

=

7

0
2W*X

i
ii ∑

=

7

0
1W*X

i
ii ∑

=

7

0
0W*X

i
ii

63 Results pass to the Vector ALU 0
The Active Matrix column number is configured by register nb2. The
same register defines the structure of packed 64-bit words moving along
the path Y. The 64-bit constant that is loaded into nb2 configures bit
length of the accumulator elements. More detailed description of the nb2
register can be found in paragraph 3.3.2 on page 3-40.

Figure 1-7 shows the execution process of one vector instruction.
Suppose that thirty-two packed words were preliminary loaded from
external memory into ram. Another source of data is in external memory.
When the weighted accumulation procedure is being performed the data
from external memory are being loaded word by word and move along

NNeeuurrooMMaattrriixx NNMM66440033 AArrcchhiitteeccttuurree OOvveerrvviieeww

1-15Assembly Language Overview
Version 1.0

the path X to the Active Matrix. At the same time the data from ram
passes to the Vector ALU along the path Y.

Figure 1-8. Data Path Through the OU in Case of Weighted Accumulation

The Vector
ALU

AFIFO

The Shadow

The Active
Matrix

OU

X

Y

Every element of the packed word passing through the X multiplies by
weights stored in cells of the related row of the Active Matrix. The
results of multiplication are accumulated in every column. The calculated
data are directed to the input X the Vector ALU and added to the data
moving along the path Y. All these operations take one cycle per single
packed word. The next cycle the processor performs the same operations
over the next pair of input data words and so on up to thirty-two times
per vector instruction. The result of these calculations is stored in afifo.

When data are stored in the processor’s internal FIFOs their split into
elements is undefined. The split becomes defined when data come along
the paths X or Y of the Operation Unit.

Division into the elements may be different for the same block of data
depending on what path, X or Y, they pass. This statement is correct in
case of using the Active Matrix. For example, the Active Matrix is
configured in the following manner: there are eight rows and four
columns (see Figure 1-7). This means that packed words of data passing
through the input X are divided into eight elements. So each element has
an 8-bit length. If the same block of data passes along the path Y it is
presented as a set of four 16-bit length elements packed into 64-bit
words.

1.5.3 Calculations in the Vector ALU
The Vector ALU is designed to perform arithmetic and logical operations
on packed words of data. It has two inputs X and Y. Source data buffers
for the Vector ALU are ram, afifo, external memory (data) and the
output of the Active Matrix. Data from all sources except for output of
the Active Matrix (see Figure 1-8) can come into the Vector ALU
through both inputs X and Y. Moreover, the “null” device can also be

NNeeuurrooMMaattrriixx NNMM66440033 AArrcchhiitteeccttuurree OOvveerrvviieeww

1-16 Assembly Language Overview
Version 1.0

used as a source buffer. The “null” device prevents data from passing
through the input.

The Vector ALU allows one more special device as the source buffer for
the input Y. It is called the “one” device. It generates packed words
according to the configuration of the register nb2. Thus, every element is
equal to 1.

The results of calculations in the Vector ALU are stored in afifo.

The inputs X and Y of the Vector ALU are divided into elements in the
same manner. This division is configured by the register nb2. The
register sb2 does not affect the division. This is the difference between
the X configurations of the Active Matrix and of the Vector ALU.

Figure 1-9. Data Processing on Vector ALU

63 Input Х 0 63 Input Y 0

X7 X6 X5 X4 X3 X2 X1 X0 32 32 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0
...

X7 X6 X5 X4 X3 X2 X1 X0 1 1 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

The Vector
ALU

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0 32

Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0 1
63 The result is in afifo 0

Calculations in the Vector ALU are made over all elements of packed
words of input data in parallel (see Figure 1-9). If overflow occurs as a
result of arithmetic operation, the carry bit will be lost. This will not
affect neighbor elements of the packed word. A “screen” between every
two elements of the packed word prevents carry in case of overflow.

Figure 1-10 shows an example of addition of two packed words, divided
into eight 8-bit elements.

NNeeuurrooMMaattrriixx NNMM66440033 AArrcchhiitteeccttuurree OOvveerrvviieeww

1-17Assembly Language Overview
Version 1.0

Figure 1-10. Addition of Two Packed Words on the Vector ALU

01 80 80 F0 02 FF FF 01

+
FE 20 80 1F 02 01 FF 01

=
FF A0 00 0F 04 00 FE 02

The cells affected by “screen” protection are shaded. The carry bits of
these cells are lost.

1.5.4 Mask Application Procedure
The Vector Unit contains Mask Application Unit to apply masks to input
data. This unit has three inputs and two outputs (see Figure 1-11). Data
that pass through the inputs X and Y first go through the Mask
Application Unit and then transfer to the Vector ALU and the Active
Matrix. If a vector instruction does not include a mask application
operation, the data is transferred through the Mask Application Unit
without any changes. Otherwise the third input is used to apply mask
vector. External memory (data), ram or afifo can be used as the
source buffer for the mask vector.

Figure 1-11. Input and Output Data Streams of Mask Application Unit

Mask Application Unit

Input Х

Mask vector

Input Y

Modified Х Modified Y

To the Vector ALU
and

the Active Matrix
With other vector operations of NM6403, mask application takes from
one to thirty two cycles depending on the number of data words to be
transferred. Three words of data come to the Mask Application Unit with
each cycle. The first one through the input X, the second one through the
Y, and the third one through the mask input. Two modified packed words
come out of the Mask Application Unit.

Data passing through the Mask Application Unit goes to the Active
matrix and/or the Vector ALU for further processing.

Mask Application in Conjunction with Weighted Accumulation

There is a vector instruction in NM6403’s instruction set that conjoins
mask application operation with weighted accumulation, for example:

NNeeuurrooMMaattrriixx NNMM66440033 AArrcchhiitteeccttuurree OOvveerrvviieeww

1-18 Assembly Language Overview
Version 1.0

 Mask X Y
rep 32 data = [ar0++] with vsum ram, data, afifo;

In this case data are processed in the following way:

• bitwise logical AND between the input vector X and the mask vector:
X AND MASK. This operation leaves unchanged only bits of the input
vector that are related to the bits of mask equal to one;

• bitwise logical AND between the input vector Y and the inverted
mask vector: Y AND NOT MASK. This operation leaves unchanged
only bits of the input vector that are related to the bits of mask equal
to zero;

• weighted accumulation of masked data passed through the input X
(Σ);

• addition of masked vector Y to the result of weighted accumulation
(Y+Σ).

Mask Application in Conjunction with Logical Operation

There is a vector instruction in NM6403’s instruction set that conjoins
mask application operation with logical operation in the Vector ALU.
For example:

 Mask X Y
rep 32 data = [ar0++] with mask ram, data, afifo;

In this case data is processed in the following way:
 (X and MASK) or (Y and not MASK)

This transformation is also called “logical masking”. It contains
operations X AND MASK and Y AND NOT MASK that are processed in the
Mask Application Unit. The results of these operations pass through the
Vector ALU where bitwise logical OR is performed on them. This data
manipulation has simple meaning and is shown in Figure 1-12:

Figure 1-12. Logical Mask Application Procedure

X7 X6 X5 X4 X3 X2 X1 X0 Input X
and and and and and and and and

FF 00 FF FF 00 00 FF 00 Mask
and not and not and not and not and not and not and not and not

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 Input Y

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

X7 Y6 X5 X4 Y3 Y2 X1 Y0
The result

packed word
Mask word configures structure of the result one. For the bits of mask
equal to 1 the corresponding bits of vector X are put to the output vector,
for the bits of mask equal to 0, the bits of Y are.

NNeeuurrooMMaattrriixx NNMM66440033 AArrcchhiitteeccttuurree OOvveerrvviieeww

1-19Assembly Language Overview
Version 1.0

Thus, the logical masking allows constructing an output word from the
related bits of two input words for one processor cycle.

1.5.5 Application of Activation Functions
The Vector Unit contains two activation units to apply saturation and
threshold functions to the input data. One of them is connected to the
path X, another one to Y (see Figure 1-4).

There are two types of activation functions:

• Threshold function (see Figure 1-13a);

• Saturation function (see Figure 1-13b).
Figure 1-13. Types of Hardware Implemented Activation Functions

Thresholds

Output

Input data
0

-H-1

H

0

-1

Output

a) Threshold function b) Saturation function

Input data

Activation units make calculations over packed words of data. Activation
units allow applying activation functions to all elements of a packed
word at the same time. Special registers: f1cr and f2cr are used to
configure activation units. More detailed information about these
registers and the rules for applying them can be found in paragraph 3.3.1
on page 3-34.

Activation units are located between the mask application unit and the
Active Matrix or the Vector ALU. Activation functions can be applied to
data passing through the both paths X and/or Y.

The type of activation function applied depends on vector instruction.
There are two types of vector instructions: arithmetic and logical. The
terms “arithmetic vector instruction” and “logical vector instruction” are
described below in this paragraph.

The threshold function can be applied to packed words of data only if
they are processed by logical vector instruction. The saturation function
can be used only in pair with arithmetic vector instructions. In this way
the threshold function is also called “logical activation”, while the
saturation function is referred to as “arithmetic activation”.

NNeeuurrooMMaattrriixx NNMM66440033 AArrcchhiitteeccttuurree OOvveerrvviieeww

1-20 Assembly Language Overview
Version 1.0

Arithmetic Activation Function

The saturation function can be used in conjunction with arithmetic vector
instructions. The term “arithmetic vector instruction” covers the
following list of vector instructions:

• All types of instructions containing the weighted accumulation
operation. For example:
 path X path Y
rep 12 with vsum , activate ram, afifo;

The reserved word “activate” means that a saturation function is
applied to data coming into the Active Matrix through the input X;

• All types of instructions containing arithmetic operations. For
example:
 path X path Y
rep 32 data =[ar0++] with data + activate ram;

In this case the term “activate” means a saturation function
application to data coming into the Vector ALU through the input Y.

All vector instructions mentioned above have the same feature. All of
them contain arithmetic operations. So, the saturation function is called
“arithmetic activation” because it is used together with arithmetic
instructions.

Logical Activation Function

The threshold function in the contrary to the saturation function is used
only in conjunction with logical vector instructions. The term “logical
vector instructions” is associated with the set of vector instructions that
contain only logical operations performed in the Vector ALU. For
example:
 path X path Y
rep 32 data = [ar0++] with data or activate ram;

In this case term “activate” means that a threshold function is applied to
data coming into the Vector ALU through the input Y.

The threshold function is used together with logical vector instructions so
it is also called as “logical activation”.

More detailed information about handling of activation units is given in
paragraph 3.3.1 on page 3-34.

1.5.6 Cyclic Shift Right One Bit
Cyclic shift right one bit can be applied only to data coming through the
path X (see Figure 1-4). This operation is used to get additional
flexibility to binary data processing. The Active Matrix does not support

NNeeuurrooMMaattrriixx NNMM66440033 AArrcchhiitteeccttuurree OOvveerrvviieeww

1-21Assembly Language Overview
Version 1.0

division of input data (coming in through the input X) into odd-bit length
elements.

The minimum possible bit length of the elements is two bits. So it is
necessary to have an additional calculation unit to process binary data.
This one is cyclic shifter. It shifts packed words of input data one bit
right. No matter how these words are split up into the elements, the
cyclic shifter shifts the whole word. In this case high bits of 2-bit
elements become low ones and can now take part in calculations. The
low bits become the high ones in the right neighbor element, but they can
be masked in the same vector instruction. Let’s take a look at the
following example:

We need to make complete permutation inside a 64-bit word.

063
…

…

The Active Matrix is configured to thirty-two rows and sixty-four
columns. Filling the particular cells of the Active Matrix with 0 or 1 we
can make permutation of every low bit of 2-bit elements of the input
word to the desired position in the output word.

Figure 1-14. Bitwise Permutation on the Active Matrix

1

1

0

63

.

.

.

11 h
l

10 h
l

1

1

01

h
l

1

0

S
ou

rc
e

w
or

d

The Active Matrix

Destination word 063
To permute high bits of elements of the source word we have to shift
them one right. In this case the high bits become the low ones and can be
processed in the same manner as shown in Figure 1-14.

The cyclic shift can be applied to source data in vector instructions
together with weighted accumulation or mask application. To activate

NNeeuurrooMMaattrriixx NNMM66440033 AArrcchhiitteeccttuurree OOvveerrvviieeww

1-22 Assembly Language Overview
Version 1.0

cyclic shifter node the key word “shift” is used in a vector instruction.
For example,
 path X path Y
rep 12 data = [ar0++] with vsum , shift data, 0;

1.5.7 Data Processing Order in Vector Unit
There are six computation nodes in the Vector Unit. Many of them can
be involved in calculations by one vector instruction, if it happens the
calculations are made according to a particular processing order. This
order is shown in Figure 1-15.

Figure 1-15. Data Processing Order in the Vector Unit

Input Vector Data Bus

RAM

Mask Application Unit

Activation
Unit

Cyclic
Shifter VR

The Active
Matrix

The Vector
ALU

AFIFO

Output Vector Data Bus

Activation
Unit

NNeeuurrooMMaattrriixx NNMM66440033 AArrcchhiitteeccttuurree OOvveerrvviieeww

1-23Assembly Language Overview
Version 1.0

Every computation node can modify data or transfer them without
modification. The behavior of the nodes is defined by a vector
instruction. The special key words are used in the instruction to activate
the particular nodes. For instance, “shift” is used to activate cyclic
shifter, “mask” is used to activate mask application, and so on. It is
possible to activate up to six nodes in one instruction, however, data will
be processed in the order as shown in Figure 1-15.

NNeeuurrooMMaattrriixx NNMM66440033 AArrcchhiitteeccttuurree OOvveerrvviieeww

1-24 Assembly Language Overview
Version 1.0

Assembly Language Overview
Version 1.0

2 Assembly Language Syntax Overview

2.1 RESERVED WORDS..2-3
2.2 ASSEMBLER FILE STRUCTURE..2-4
2.3 SECTIONS ...2-5
2.3.1 Code Section .. 2-6
2.3.2 Initialized Data Section ... 2-6
2.3.3 Non-Initialized Data Section ...2-8
2.3.4 Space Between Sections..2-8

2.4 CONSTANTS ..2-8
2.4.1 Constants Representation Formats ..2-8

2.4.1.1 Binary Integer Constant ..2-9
2.4.1.2 Octal Integer Constant ..2-9
2.4.1.3 Decimal Integer Constant ...2-9
2.4.1.4 Hexadecimal Integer Constant..2-10
2.4.1.5 Floating-point Constant ...2-10
2.4.1.6 String Constant ...2-10

2.4.2 Constant Expression...2-11
2.4.2.1 Numerical Constant Expression..2-11
2.4.2.2 Address Constant Expression...2-12

2.4.3 Definition and Use of Constants ...2-12
2.5 LABEL ... 2-13
2.5.1 Label Declaration.. 2-13
2.5.2 Label Definition ... 2-14
2.5.3 References to a Label...2-14
2.5.4 Types of Binding and Label Definition Area..2-15

2.6 VARIABLES ..2-18
2.6.1 Obtaining the Variable Address ..2-19
2.6.2 Obtaining the Variable Value ..2-19
2.6.3 Fundamental Types ..2-19
2.6.4 Compound Types..2-19

2.6.4.1 Arrays ..2-19
2.6.4.2 Structures..2-20

2.6.5 Initialization of Variables ... 2-22
2.6.6 Variable Definition Area ..2-23
2.6.7 File Areas for Variables Declaration, Definition and Initialization 2-24

2.7 ASSEMBLER DIRECTIVES..2-25
2.7.1 Directive .align .. 2-27
2.7.2 Directives .branch and .wait..2-28
2.7.3 Directives .if, .else and .endif ..2-29
2.7.4 Directives .repeat and .endrepeat...2-30
2.7.5 Directives of Debugging Information...2-30

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-2 Assembly Language Overview
Version 1.0

2.7.5.1 Directive .debug_arange .. 2-30
2.7.5.2 Directives .debug_die and .debug_die_child ... 2-31
2.7.5.3 Directive .debug_die_endchild ... 2-33
2.7.5.4 Directives .debug_start_sequence и .debug_end_sequence.. 2-33
2.7.5.5 Directive .debug_frame_cie.. 2-34
2.7.5.6 Directive .debug_frame_fde ... 2-34
2.7.5.7 Directive .debug_line .. 2-34
2.7.5.8 Directive .debug_pubname .. 2-35
2.7.5.9 Directive .debug_root_die .. 2-35
2.7.5.10 Directive debug_source_directory.. 2-35
2.7.5.11 Directive debug_source_file ... 2-36

2.8 PSEUDO FUNCTIONS.. 2-36
2.8.1 Function loword .. 2-37
2.8.2 Function hiword .. 2-37
2.8.3 Function sizeof.. 2-37
2.8.4 Function offset .. 2-38
2.8.5 Functions float and double.. 2-39

2.9 USING MACROS... 2-40
2.9.1 Purpose of Macros.. 2-40
2.9.2 Syntax of Macros .. 2-40
2.9.3 Description.. 2-40
2.9.4 Using Label in Macros .. 2-41
2.9.5 Importing Macros from Marco Library... 2-42

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-3Assembly Language Overview
Version 1.0

Programs written in assembly language for NM6403 contain different
syntax like assembly directives, instructions, macros, pseudo-instructions
and comments. The following lines demonstrate some examples of
correct syntax of NM6403 assembly language:
MySym: word = 80h; // Variable definition.

<L1> ar0 = ar2 + gr2; // Address register modification.

rep 32 [ar0++] = afifo; // Vector instruction.

Instruction syntax does not contain any firm requirements to the line
structure, i.e. there are no predefined positions where particular fields of
instruction or directive should be located.

Each assembler instruction should end with a symbol ‘;’. If assembler
cannot find the instruction-terminating symbol in the current line it
considers the instruction to continue to the next line.

General form of NM6403 assembler instruction syntax looks as follows:
[<label>] assembler instruction; [//comments]

The comments must be single-line.

Labels and comments can be omitted.

2.1 Reserved Words
The tables below contain separately the main group of reserved words
and reserved words used to store debug information.

Table 2-1. Set of Reserved Words of NM6403 Assembler

activate addr afifo align and begin branch

call callrel carry cfalse clear code common

const ctrue data delayed double dup end

endif endrepeat extern false flag float from

ftw global goto hiword if import ireturn

label local locdesc long loword macro mask

nobits noflags not nul offset own push

pop ram ref rep repeat return sconst

set shift sizeof skip store string struct

true uconst vfalse vnul vregs vsum vtrue

wait weak wfifo with word wtw xor

Table 2-2. Set of Debug Information Reserved Words

debug_arange debug_die debug_die_child

debug_die_endchild debug_end_sequence debug_frame_cie

debug_frame_fde debug_line debug_macro_def

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-4 Assembly Language Overview
Version 1.0

debug_macro_end_file debug_macro_start_file debug_macro_undef

debug_pubname debug_root_die debug_source_directory

debug_source_file debug_start_sequence

Note Assembler distinguishes upper- and lowercase symbols. That’s why all
reserved words should be written by lowercase letters, otherwise the
word will be regarded as an identifier.

All processor registers are also reserved words. They are always written
by lowercase letters. For example, the record ’gr0‘ denotes a processor
register but ’Gr0’ or ‘GR0‘ are identifiers.

Table 2-3. Set of Registers of NeuroMatrix NM6403

DESIGNATION PURPOSE BIT LENGTH

grj General purpose register j (j=0,…,7) 32

arj Address register j (j=0,…,7) 32

pc Program counter 32

pswr Processor state word register 32

intr Register of query for interrupt and direct memory
access

32

fjcr(h,l) Activation function j (j=1,2) control register 64(32+32)

vr(h,l) Bias register 64(32+32)

nb1(h,l) Neuron boundary register 64(32+32)

sb(h,l) Synapse boundary register 64(32+32)

gmicr Register of interface control from global bus 32

lmicr Register of interface control from local bus 32

ocaj Output channel j (j=0,1)address register 32

icaj Input channel j (j=0,1)address register 32

occj Output channel j (j=0,1)counter 32

iccj Input channel j (j=0,1)counter 32

dorj Output channel j (j=0,1)data register 64

dirj Input channel j (j=0,1)data register 64

tj Timer j (j=0,1) control register 32

2.2 Assembler File Structure
An assembler file has a definite structure given in Figure 2-1:

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-5Assembly Language Overview
Version 1.0

Figure 2-1. Assembler File Structure

Assembler file

Section

Section

Section

Section

An assembler file can be conditionally divided into a space of sections
and a space between the sections.

2.3 Sections
There are three types of sections in assembly language:

• Section of code;

• Section of initialized data;

• Section of non-initialized data.

Sections of all types in NM6403 assembly language submit to identical
design rules. These rules are enumerated below.

Rules of Section Design

A section starts with one of the following reserved word: begin, data
or nobits which is the opening bracket and ends with the word end
(closing bracket). Assembler defines the section type according to the
opening bracket. Information about correspondence of the opening
bracket reserved words to the section types will be given later in this
paragraph. The section name should go right after the opening /closing
bracket in the same line. For example a code section mycest is to be
designed in the following way:
begin “mysect” // beginning of the section mysect

 section body

end “mysect”; //end of the section mysect

There is no comma after the opening bracket and there should be a
comma after the closing bracket. The section names by the opening and
the closing brackets should coincide.

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-6 Assembly Language Overview
Version 1.0

A section name may be of any length within 255 characters. It is a set of
capital and small letters, numbers and the symbols:

. , / \ : ; " ’ ` [] - + = & ! < > () * { } _.

Section name must be bracketed with double quotes. This name goes to
the object file “as is”.

2.3.1 Code Section
This type of sections contains sequence of instructions defining the order
of the program execution.

Code section starts with the opening bracket begin.

For convenience of the further work with code sections it is
recommended to form the section name adding the prefix ‘text’ to the
desired name, for example: begin “textmycode”. This prefix is used
by an object and executable files decoder (dump.exe) to automatically
decode this section as a code section.

Not only instructions, but also identifier definitions can be placed to code
sections. If the identifier is initialized, i.e. it has an initial value, it is
located in the section at the appropriate address. If the identifier is not
initialized the place in the section where it is defined is filled with a zero
value.

For example a code section may be designed in the following way:
begin ".textmycode"

// identifiers assignment block.
 A: long = 0123456789ABCDEFhl;

 B: word;

// processor instructions block.
<Label>

 ar0 = A;

 ar2,gr2 = [ar0];

end ".textmycode";

The possibility of identifier definitions in the code section is introduced
rather for convenience than as a constantly used trick. There are
particular types of sections for definition of initialized and non-initialized
variables. It is more convenient to work with those types of sections
because their position in the processor memory can be managed.

2.3.2 Initialized Data Section
Initialized data sections contain variables definitions combined with their
initialization.

An initialized data section begins with the opening bracket data.

Here is an example of an initialized data section:

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-7Assembly Language Overview
Version 1.0

data ".my_init_data"

 Val1: word = 12;

 Val2: word = 0A5h;

 Arr: long[4] = (0FF00FF00FF00FF00hl dup 4);

end ".my_init_data";

Assembler permits to define non-initialized variables in the initialized
data section. For instance the following construction will not cause any
error:
data ".my_init_data"

 Val1: long = 12;

 Arr: long[4]; //non-initialized variable.
 Val2: word = 0A5h;

end ".my_init_data";

However compiler distinguishes initialized and non-initialized data
during compilation. An additional section is created for non-initialized
variables where all detected variables are placed. There is a selection rule
of the name of non-initialized data section generated by the compiler.
Prefix ‘.bss’ is added to the existing initialized data section name, for
example, for the section «.my_init_data» an additional section
«.bss.my_init_data» is being created and all non-initialized
variables are put to it.

Thus if non-initialized variables appear in the initialized data section,
assembler creates an additional section of non-initialized data where it
puts all found non-initialized variables. It is equivalent to the following
construction:
data ".my_init_data"

 Val1: long = 12;

 Val2: word = 0A5h;

end ".my_init_data";

nobits ".bss.my_init_data"

 Arr: long[4]; // non-initialized variable.
end ".bss.my_init_data";

If the assembler while processing an initialized data section meets a
partly initialized structure or an array it doesn’t separate them, but fills
non-initialized fields with nulls. If all fields are not initialized, this
structure goes to the related section of non-initialized data. In order to
leave the structure in its place it is enough to initialize at least one of its
fields.

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-8 Assembly Language Overview
Version 1.0

2.3.3 Non-Initialized Data Section
Non-initialized data sections contain only definitions of variables used in
the program without their initialization.

Non-initialized data section begins with the opening bracket nobits.

Here is an example of a non-initialized data section:
nobits ".my_bss_data"

 Val1: word;

 Val2: word;

 Arr: long[4];

end ".my_bss_data";

If an initialized variable appears in the non-initialized data section,
assembler ignores its initialization regarding the variable as non-
initialized.

2.3.4 Space Between Sections
Space between sections in the assembler file can also be used for location
of the following syntactical constructions:

definition of constants and constant expressions including pseudo-
functions;

declaration of all possible types of labels;

declaration of variables like common and extern;

description of structural types of data;

2.4 Constants
This Section describes use of constants and constant expressions in
assembler and format of their representation.

There are 32-bit and 64-bit length constants. By default, a constant is
considered as 32-bit (short constant). To record 64-bit integer constants,
further referred to as long constants, the sign l(lowcase ‘L’) is used and it
is added to the end. For example the constant A = 0x123h is 32-bit and
B=123hl is 64-bit.

There are floating point (32-bit) and double (64-bit) point constants.
Special compilation time pseudo-functions float() and double() are
used to record these constants in assembler. More detailed information
can be found later in this Section.

2.4.1 Constants Representation Formats
Assembler supports six formats of constants:

• Binary integer constant;

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-9Assembly Language Overview
Version 1.0

• Octal integer constant;

• Decimal integer constant;

• Hexadecimal integer constant;

• Floating-point constant;

• Symbol constant.

2.4.1.1 Binary Integer Constant

A binary integer constant is a line of zeros and ones with the length of up
to 64 characters. A binary constant is terminated with a symbol b. If the
number of characters in a binary constant line is less than 32 or 64, the
non used bits (high-order word part) are automatically filled with zero by
the assembler. Here are some examples of correctly recorded binary
constants:
00000000b // Constant equal to zero.

001bl // Long constant equal to 1.

10000b // Constant equal to 1610.
10101010b // Constant equal to 17010 or АА16.

2.4.1.2 Octal Integer Constant

An octal integer constant is a line containing numerals from 0 to 7
terminated with a symbol o. Here are some examples of correctly
recorded octal constants:
000о // Constant equal to zero.

001о // Constant equal to 1.

20оl // Long constant equal to 1610.

252о // Constant equal to 17010 orАА16.

2.4.1.3 Decimal Integer Constant

A decimal integer constant is a line containing numerals from 0 to 9. The
decimal short integer is ranged from -2.147.483.648 to 2.147.483.647 for
signed and from 0 to 4.294.967.295 for unsigned. The range of long
integer is from -9.223.372.036.854.775.808 to
9.223.372.036.854.775.807 for signed and from 0 to
18.446.744.073.709.551.615 for unsigned. Here are some examples of
correctly recorded decimal constants:
7000 // Constant equal to 700010.

-1 // Constant equal to -1.

-20l // Long constant equal to -20.
170 // Constant equal to 17010 or АА16.

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-10 Assembly Language Overview
Version 1.0

The sign «-» can be used to designate negative numbers only in the
decimal format.

2.4.1.4 Hexadecimal Integer Constant

A hexadecimal integer constant is a line containing numbers from 0 to 9
and letters A, B, C, D, E and F. Hexadecimal integer constants are
terminated with a symbol h. The record of a constant should begin with a
numeral. If the first significant element is a letter, a zero should be added
as a prefix. The symbol «0» at the beginning of a hexadecimal constant is
necessary to distinguish the constant from an identifier. Here are some
examples of correctly recorded hexadecimal constants:
000h // Constant equal to zero.

01h // Constant equal to 1.

20hl // Long constant equal to 3210.
0FFFFFFFFh // Constant equal to -1.

2.4.1.5 Floating-point Constant

Operations over this type of constants are not hardware supported.
Special pseudo-functions are used in assembler to record floating-point
constants. For a 32-bit floating-point value the pseudo-function
float()is used. The pseudo-function double()is used for a 64-bit
floating-point value. Within the pseudo-function brackets a real number
in the usual form can be used, for example:
float(123.456) // Floating-point number (32 bits).

double(-1.02E-3) // Negative number.

Real number format:
[+|-]num[.numE][+|-]num, where num – decimal numbers.

Or
[+|-]num.num

To emulate floating-point operations on NM6403 the special system
library is used. All the operations are made over floating- and double-
point values according to IEEE 754 format.

2.4.1.6 String Constant

A string constant is an arbitrary (may be empty) set of ASCII characters
taken into double or single quote. If it is necessary to use the character of
quote itself, it should be doubled.

Examples of string constants:
"String constant",

'Packed string constant'

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-11Assembly Language Overview
Version 1.0

A string constant occupies different number of words depending on what
commas it is surrounded with. A string in double quote is located in
memory according to the convention adopted in C++ – a minimum
addressed memory element for each symbol. In case of the NM6403 it is
a 32-bit word. Thus, arbitrary access to the string characters is possible.

In case of use of a single quote the characters are «packed» in fours; so
one 32-bit word contains four chars. A packed string constant occupies
four times less memory then the unpacked one.

A string constant does not contain any other information (a special
ending symbol or a string length value) except for those explicitly
indicated inside the quotes.

2.4.2 Constant Expression
Besides use of constants in the NM6403 assembly language, it is possible
to use constant expressions, which can be calculated at the stage of the
program compilation. That’s why only the result of the calculations goes
to the object code.

Constant expressions are divided into numerical and address expressions.
In the first case, the result of the constant expression calculation is
treated as a common numerical constant, in the second case - as an
address in the memory.

2.4.2.1 Numerical Constant Expression

Numerical constant expression is calculated according to the rules
traditional for the expressions. There is a set of common arithmetical
operations, bitwise logical operations, multiplication/division, shift and
so on. The operations priorities coincide with those in C++. Round
brackets are used for partial change in the order of operations execution.

Table 2-4. Summary of Numerical Constant Expression Operations

OPERATIONS DESCRIPTION

not Bitwise NOT
- Unary minus
*

/
Multiplication

Division
+

-
Summation (plus)

Subtraction (minus)
<<

>>
Left shift

Right shift
<

<=
Less than

Less than-equal

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-12 Assembly Language Overview
Version 1.0

>

>=
Greater than

Greater than-equal
==

!=
Equal

Not equal
and Bitwise AND
xor Bitwise exclusive OR
or Bitwise OR

An example of a numerical constant expression:
const A = 117;

const B = 23;

const C = ((A + B)/2 + A>>2)*2;

2.4.2.2 Address Constant Expression

An address constant expression is a combination of numerical constants
and addresses of labels and variables. The result of calculation of an
address constant expression is a memory address. There are some
limitations on an address constant expression. In the address arithmetic
only operations of summation and subtraction are allowed for constant
expression with the following notes:

the result of summation with a number - is address; summation of two
addresses is forbidden;

difference of two addresses from the same section is a numerical
constant; it is forbidden to subtract addresses from different sections and
the address from a number.

If the indicated conditions for an address constant expression are not met,
the assembler generates an error.

Usage of names of registers or indirect memory access is not allowed in
constant expressions.

Here is an example of a constant expression:
ar2 = ARRAY + 2;

2.4.3 Definition and Use of Constants
In assembler the reserved word const is used to define a constant or a
constant expression, for instance:
const MyConst = 0FA5Fh;

The right part of this syntax construction is a numerical constant or a
constant expression. The left part is its symbol equivalent that can be
further used for initialization of variables and registers.

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-13Assembly Language Overview
Version 1.0

The lifetime of a constant is the compilation time. The assembler doesn’t
reserve memory to store a constant. However, if some variable is
initialized by a constant, the constant is stored to the variable address.

The constant definition can be located anywhere in the file inside
sections as well as outside them. In order to show that the constant does
not depend on any section it is a good style to put it to the space between
sections.

A constant should be defined before it appears in the assembler
instruction, for example:
const C = 12; // Constant definition.
...

begin “text”

 ...

 ar0 = С ; // Its first appearance;
 ...

end “text”;

Symbol constants are a full equivalent to numerals; they can take part in
constant expressions and being used for initialization of variables and
registers.

Constants are accessible only inside the file they are defined in.

2.5 Label
Any instruction in a code section can be marked with a label (may be
with more than one). Labels are used to execute different kind of branch
instructions like function call or conditional jump. A label marks the
particular address in memory. It is always associated with an instruction.

A label is presented in the form of a string beginning with a character or
the symbol «_». A label consists of Latin characters (both lower- and
uppercase), numerals and the symbol «_». In the examples below the
correct label names are shown:
Loop_0,

__main,

Z987654321A.

2.5.1 Label Declaration
Before using a label it should be declared, for instance:
MyLabel: label;

Label declaration can be located anywhere in an assembler file inside
sections as well as outside them. Declaration is simply a message to the
compiler that the label should appear in this file.

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-14 Assembly Language Overview
Version 1.0

2.5.2 Label Definition
The programmer makes label definition when a particular assembler
instruction is marked with that label. Here is an example of label
definition:
 gr0 = 123;

<loop> // point of the label definition.
 [ar0++] = gr0;

 ...

 goto loop;

Syntax of label definition is the label surrounded by French quotes, for
example <loop>. The label marks the instruction that is located right
after the label definition. In the example above the instruction [ar0++]
= gr0; is marked with the label loop. Label definition means the label
points to the memory address of the assembler instructions it is
associated with.

2.5.3 References to a Label
Besides label declaration and definition, references to a label can be met
in the program. There can be several references to one label. References
are used mainly in branch instructions. In the examples below some
references to a label are shown:
goto loop; // reference to the label loop.

call Funс; // function call, Funс - label of its starting point.

gr3 = Func; // copy an address of the label Func to the address register.

A reference to a label contains only its name as it has been declared,
without any additional brackets.

Here is an example of a label use:
L: label; // label declaration.
...

begin text

...

<L> // label definition.
 gr0 = gr2 or gr3;

 ...

 goto L; // references to the label.
...

end text;

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-15Assembly Language Overview
Version 1.0

2.5.4 Types of Binding and Label Definition Area
Four different types of label binding are supported in assembly language
for NM6403:

local – labels with local binding;

global – labels with global binding;

extern – labels with extern global binding;

weak – labels with weak global binding.

A reserved word defining the label binding type is located before the
label name, for instance:
global MyFunc: label;

local MyFunc: label;

extern MyFunc: label;

weak MyFunc: label;

The label binding type defines its definition area.

The simplest type is the local binding. The definition area of labels of
this type is limited by the file where they are defined.

Within the file a local label can be declared only once, it can be defined
only once, i.e. associated with a particular address in the program. At the
same time an arbitrary number of references to the label can be found
within the file. References to a local label from another file are
prohibited.

The local labels with the same name can be used in different files
because each of them has the own definition area and the definition areas
of those labels are not crossed.

It is possible to omit the word local in the local label declaration. For
example the local label can be declared in the following way:
MyFunc: label;

Moreover it is possible to omit the local labels declaration. If the
assembler comes across a label definition without preliminary declaration
it will consider this label as a local one.

Declaration of local labels is mainly used to make assembler programs
easier to read and more documented.

The labels defined with the global binding are accessible outside the
file where they were defined. It is possible to refer to them from every
file of the program. The global labels should be used under the
following conditions:

two global labels with the same name cannot be used in the program;

a global label should be defined in the same file where it has been
declared.

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-16 Assembly Language Overview
Version 1.0

All other files of the program can contain references to a global label,
i.e. to the address, which it was associated with. In order to refer to a
label defined in another file it should be declared as external (extern).

The extern type is used when a current file contains at least one
reference to a global label defined in another file. Only after the
extern label is declared it becomes accessible to the current file.

Thus a global label has the entire program definition area. The global
label can be defined only once. In the file where it is defined it should be
declared as global. In all other files of the program it is declared as
extern if it is necessary to refer to it.

Example:
The file F1.ASM:

 global MyFunc: label; // global label declaration

 ... // the label will be defined in the file.

 begin “.text”

 ...

 <MyFunc> // label definition.
 push ar0, gr0;

 ...

 return;

 ...

 call MyFunc; // reference to the label.
 end “.text”;

The file F2.ASM:

 extern MyFunc: label; // external label declaration

 ... // the label is defined in the another file.

 begin “.text”

 ...

 call MyFunc; // reference to the external label.
 end “.text”;

There is one more type of labels with global binding. It is weak binding.
The definition area of a weak label is the entire program too. The term
“weak“ means that the label has less priority then the global label with
the same name defined somewhere else in the program.

If there are a weak label and a global label with the same name in the
program the linker ignores the weak label and all references are tuned to

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-17Assembly Language Overview
Version 1.0

the memory address of the global label definition. If there is no
global label with the same name like the weak label has, the linker
considers the weak label as the global one.

The weak labels should be used under the following conditions:

two labels with the same name are not allowed in one file;

a label should be defined in the same file where it has been declared;

it is possible to use two and more labels with the same name defined in
different files of the program. In this case the linker selects the first label
definition address it meets processing object files and ignores others. The
linker solves all references to the selected label. The object files order in
the linker command line defines which label is selected:

• if there is a global label in the program, all weak labels with the
same name are ignored;

• if there is no global label with the same name, the weak label
becomes global, i.e. it is referred to from other files by declaring it
external.

Here is an example of usage of labels with the weak binding:
The file F1.asm, where АВ is a weak label:
weak AB: label;

...

begin text

 <AB>

 ...

 gr0 = gr1 + gr2;

 ...

 return;

end text;

The file F2.asm, where АВ is a global label:
global AB: label;

...

begin text

 <AB>

 ...

 gr0 = gr1 - gr2;

 ...

 return;

end text;

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-18 Assembly Language Overview
Version 1.0

The file F3.asm - AB is an external label:
extern AB: label;

global __main: label;

...

begin text

 <__main>

 ...

 call AB;

 ...

 return;

end text;

If files F1.ELF and F3.ELF are gathered in one program by the linker,
the AB function will be called from the file F1.ELF, so the operation gr0
= gr1 + gr2 will be processed.

If files F1.ELF, F2.ELF and F3.ELF are gathered together, the AB
function will be called from the file F2.ELF, and the operation gr0 =
gr1 - gr2 will be calculated.

Thus the weak label is considered global if there is no global label with
the same name. In case the global label is defined the weak one is
ignored.

2.6 Variables
A variable in the NM6403 assembly language is an address in the
processor memory where a data element is stored. The variable is used to
refer to a particular memory cell during calculations.

A variable has a string name which begins with a Latin letter or the
symbol «_» and can contain Latin characters (both lower- and
uppercase), numerals and the symbol «_». Here are some examples of
correct variable names:
Array_0,

__Long_Value,

Z987654321A.

Each variable in the assembly language is associated with the address of
a particular memory cell. Variables are accessible for read/write
operations.

There are two ways of using variables in the NM6403 assembly
language. The first way is to obtain the variable address; the second one
is to get the contents of the memory cell the variable points to.

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-19Assembly Language Overview
Version 1.0

2.6.1 Obtaining the Variable Address
In order to obtain the variable address its name is used. Some examples
of correct records of variable addresses obtaining are shown below:
ar0 = Value;

ar0 = Array[4];

ar0 = Struct.Field;

2.6.2 Obtaining the Variable Value
In order to obtain the variable value it is necessary to take its name into
square brackets. Let’s give some examples of correct records of
variables values obtaining:
gr0 = [Value];

gr0 = [Array[4]];

gr0 = [Struct.Field];

There are a few types of variables, which are divided into two groups:
simple and compound variables.

2.6.3 Fundamental Types
The fundamental types are the minimum hardware supported types
considered as a single unit.

As the processor NM6403 supports two base formats – the 32-bit and the
64-bit word there are two data types in assembler, which are called word
and long. In programs they are denoted with syntax words 'word' for
32-bit and 'long' for 64-bit variables:

Here are some examples of fundamental type data description:
Var1 : word;

Var2 : word = 0abch;

Var3 : long;

Note Variables of the long type are always located at an even address.
Assembler checks their address during compilation and automatically
makes alignments inserting a short null word if necessary.

2.6.4 Compound Types
The compound types are formed on the bases of fundamental types. The
assembler supports two compound types: arrays and structures.

2.6.4.1 Arrays

An array is a finite ordered set of elements of the same type. An array
size (number of elements) is statically assigned, i.e. it is defined during
the program compilation. Access to separate array elements is made by

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-20 Assembly Language Overview
Version 1.0

means of the array name and the element index in this array. The first
array element is considered to have the zero index.

The array definition should contain the number of elements given in
square brackets assigned to an element type.

Here are some examples of an array definition:
Word : word[32]; // the array of 32 32-bit words.

Long : long[10]; // the array of 10 64-bit words.

Examples of getting the array elements addresses:
ar0 = Word[4]; // address of the 4-th word of the array.

ar0 = Long[8]; // address of the 8-th long word of the array.

Examples of getting the array elements values:
ar0 = [Word[4]]; // value of the 4-th word of the array.

ar0,gr0 = [Long[8]]; // value of the 8-th long word of the array.

Note During indexing by array elements the type of the elements is taken into
account. If long words are the elements of the array then the distance
between two neighbor array elements is equal to two addressed memory
cells, for example:

ar0 = Long[0]; // address 0х00000010;

ar1 = Long[1]; // address 0х00000012;

ar2 = Long[2]; // address 0х00000014;

2.6.4.2 Structures

A structure is a complex variable consisting of a finite set of elements of
an arbitrary type. Access to elements of the structure is made by means
of assigning the structure value name and the element name (see example
below).

In order to assign the definition of a structural variable it is first
necessary to make description of the structure. Here is an example of a
structure pattern description:
struct MyStructName // opening bracket of the structure

 F1 : word; // structure fields

 F2 : long; // -//-

 F3 : long; // -//-

end MyStructName; // closing bracket of the structure

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-21Assembly Language Overview
Version 1.0

Note Description of the structure pattern is an abstract concept until a
variable of this type appears in the program. The structure description
itself does not occupy any room in memory. That’s why in order to
improve the program readability it is better to take pattern description
outside sections.

Having the structure description it is possible to define a particular
variable of this type, for example:
nobits ".data"

 ...

 Var5 : MyStructName;

 ...

end ".data";

In addition to fundamental types any compound types can be used as
elements of an array or a structure.

In order to obtain the address of a structure element the point notation is
used, for example:
nobits ".data"

 ...

 Struct : MyStructName;

 ...

end ".data";

...

begin text

 ...

 ar0 = Struct.F2; // address of the element F2 of the structure

 gr0 = [Sruct.F3];// value of the element F3 of the structure
 ...

end;

It was mentioned above that the variables of the long type are always
aligned at an even address. The same is true for the fields of a structure.
If a field of the long type goes after an odd number of fields of the
short type, this long type field is aligned by adding the short empty
field, for example:
// Variable of the structured type
Var5: MyStructName;

// ========== Var5 location in memory ================
Var5.F1 (short) | 0x00000000

 Empty field | 0x00000001

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-22 Assembly Language Overview
Version 1.0

Var5.F2 (long) | 0x00000002

Var5.F3 (long) | 0x00000004

Note If a structure contains a field of the long type, variables of the structured
type are aligned at an even address.

2.6.5 Initialization of Variables
When defining variables it is possible to initialize them with initial
values. The initial value or a list of initial values goes after definition of
the variable type after the sign ‘=‘. Here are some examples of variable
initialization:
data ".data"

 Var1: word = 01234567h;

 Var2: long = 0123456789abcdefhl;

 Var3: word[4] = (0, 1, 2, 3);

end ".data"

For the fundamental formats the initial value is assigned in the form of a
constant (or a constant expression), for example:
Var1 : word = 123 + 32*100;

When variables of the long type are initialized the letter 'L' or 'l' should
be placed right after the constant to indicate that this number is
considered long. For example:
Var2 : long = 0ffffffffffffffffhl;

In case the compound type variables are initialized the list of initial
values is divided by commas and taken in round brackets.

The assembler does not compare types of the initializer and the
initialized object.

All long initializers should be 'L' terminated. Otherwise, the assembler
fills high 32 bits of the long word with null. When this happens the
assembler gives the related warning. (see NeuroMatrix NM6403 SDK.
Programmer’s Reference, the chapter Assembler).

Here are some examples of initializations of variables of compound
types:
struct MyStruct

 First : word;

 Second: long;

 Third : word[2];

end MyStruct;

...

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-23Assembly Language Overview
Version 1.0

data ".data"

 Var1 : word[3] = (1, 1, 1);

 Var2 : MyStruct[2] = ((3, -1L, (12, 345)),

 (2, -2L, (67, 89)));

end ".data";

If some of the sequential fields of the compound variable are initialized
with the same value a special reserved word dup (duplicate) followed by
the number of repetitions can be used. Example:
Var1 : word[3] = (1 dup 3);

Var2 : MyStruct[2] = ((3, -1L, (12, 345)) dup 2);

2.6.6 Variable Definition Area
Each variable has got a definition area. The possible variable definition
areas are listed below:

• local - local binding variables are used only within the file where
they are defined and are not accessible (invisible) outside it;

• global - global binding variables are visible both inside the file where
they are defined and outside it. Global variable are accessible from any
file of the program;

• extern – the term “extern” applied to a variable means that the
variable is defined somewhere outside the file and will be referred to in
this file;

• weak - global variables with the weak binding. The same as global
but with less priority. If a definition of a global variable with the same
name is found in the program the variables of this type are ignored;

• common - common variables can be only declared but not defined.
They are accessible from any file of the program. The linker itself
reserves the room for the common data.

Some comments and examples to every binding type of variables are
given below:

The reserved word ‘local’ can be omitted in the local variable
specifications; it is considered that if in the definition area of the variable
is not particularly indicated in the variable declaration/definition then
this variable is the local one.

Here are examples of local, global and weak binding type variable
definition:
data “.MyData”

 Var1 : word[2] = (0,1);// local variable

 global Var2 : long = 0l; // global variable

 waek Var3 : word = 1234; // weak variable

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-24 Assembly Language Overview
Version 1.0

end “.MyData”;

The weak type of binding is a subset of the global type. The same rules
are correct for the weak variables as for the weak labels (see 2.5.4 on
page 2-15).

In order to use a reference to a global variable defined outside the current
file it is necessary to declare this variable as extern. For instance:
extern Var3 : word;

No room is reserved in memory for the external variable declared in the
file. Linker uses extern declaration to resolve references to the global
variable address in memory.

Common variables can be declared as follows:
common Var : word;

Common variables cannot be initialized with an initial value. The
requirements to common variables are:

there cannot be two variables with the same name in one file;

variables with identical names declared in different files of the program
are united by the linker into a single unit and a single memory block is
allocated;

all references to common variables (with the same name) throughout the
program refer to the same memory address;

common variables with identical names can be of different types, for
example, if the variable common MyCommon: word; is declared in one
file and the variable common MyCommon: long[4] - in another file,
then the total size of the allocated memory is equal to
sizeof(long)*4;

memory space for variables is allocated in a special section named
“.common”. This section is created automatically if variables of this
binding type are found.

2.6.7 File Areas for Variables Declaration, Definition and Initialization
The linker reserves the required memory space when it processes
variable definition. If the variable is initialized with an initial value, this
value is stored in the reserved location.

Variables of the types local, global, weak should be defined only
within sections. Sections of initialized and non-initialized data are used
for this purpose. For more details about data sections see Section 2.3 on
page 2-5.

The linker doesn’t reserve memory when it processes declaration of
extern or common variables. That’s why it is recommended to declare
variables of these binding types outside sections.

Here are examples of correct and incorrect variable declaration:

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-25Assembly Language Overview
Version 1.0

data ".data"

 // Section internal area.

 global Aglob: word; // correct declaration;

 Bloc : long; // correct declaration;

 weak Cweak: word; // correct declaration;
end ".data";

// File area outside sections.

global Dglob: word; // incorrect declaration;

commom Ecomm: long; // correct declaration;

 Floc : long; // incorrect declaration;

weak Gweak: word; // incorrect declaration;

extern Hextr: word; // correct declaration;

data ".data1"

 // Section internal area.

 commom Icomm: long; // incorrect declaration;

 extern Jextr: word; // incorrect declaration;
end ".data1";

2.7 Assembler Directives
This section contains description of the assembler directives available.
Unlike the processor instructions, directives are not translated into any
special code, but only influence the process of the program compilation.
The assembler directives permit:

• to perform conditional compilation;

• to align the program elements like instructions and variables;

• to define the number of data blocks repetitions;

• to contain debug information in an assembler file;

• to permit or not parallel execution of a processor instruction.

The assembler directive line should be terminated with ";".

Two tables of directives are given below. These are the summary table
without a list of debugging information directives and the table of debug
information directives. The directives are listed in the alphabet order.

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-26 Assembly Language Overview
Version 1.0

Table 2-5. Summary Table of Assembly Directives (Part 1)

MNEMONICS DESCRIPTION

.align Even address alignment.
.branch Switch on the processor instructions parallel

execution.
.else Beginning of the alternative conditional compilation

block
.endif End of the conditional compilation block.

.endrepeat End of the instructions repetition block.
.if condition Beginning of the conditional compilation block.

.repeat number of repeats Beginning of the instructions repetition block.
.wait Switch off the processor instructions parallel

execution.

The assembler has a set of directives to store debug information in an
assembler file.

The assembler supports debug information representation according to
the standard DWARF, version 2.0. The description of standard DWARF
is contained in the document: TIS Committee “DWARF Debugging
Information Format. v2.0”. All directives of debug information start
with the prefix '.debug_':

Table 2-6. Summary Table of Assembly Directives (Part 2)

MNEMONICS DESCRIPTION

.debug_arange Information about the program address ranges;
.debug_die Description of a new DIE (Debug Information

Entry);
.debug_die_child Description of a new DIE which is a child DIE

of .debug_die;
.debug_die_endchild Description of the last child DIE in the chain of

child DIEs of .debug_die;
.debug_end_sequence Marker of the continuous code block end;
.debug_frame_cie Information about call stack;
.debug_frame_fde Information about call stack;

.debug_line Information about the source text lines;
.debug_pubname Information about global symbols;
.debug_root_die Description of the root DIE of the compilation

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-27Assembly Language Overview
Version 1.0

unit (CU);
.debug_source_directory Information about the paths to source texts of

the program;
.debug_source_file Information about the source texts files;

.debug_start_sequence Marker of the continuous code block beginning;

Every debug information directive has several arguments enumerated
through commas and ends with a semicolon. For example:
 .debug_line 2, 3, 1;

In order to understand correctly the debugging information directives
structure and principles of use it is necessary to get familiar with the
description of debug information standard DWARF (the document: TIS
Committee “DWARF Debugging Information Format. v2.0”).

2.7.1 Directive .align
The .align directive informs the assembler that the data following the
directive should be located at even memory address. Empty space filled
with null will be inserted to the code/data section if necessary.

The .align directive does not require any additional parameters.

The .align directive cannot be used outside sections. If it is used in the
code section, the nul instruction will be inserted into the program for
alignment. If it is used in the initialized data section the empty non-
referenced space filled with zero will be inserted. If it is used in the non-
initialized data section the current address will be increased by 1.

Here is an example of the .align directive use:

In data sections:
data "Init" // section starts always with
 // an even address.
 Var1: word[5] = (-1 dup 5);

 // odd number of elements.

 // the next variable should be
 // located by an odd address.

 .align; // alignment directive;
 // assembler skips 32-bit word.

 // starts with an even address.
 Var2: word[2] = (5A5A5A5Ah dup 2);

end "Init";

The data are located in memory in the following order:
00: FFFFFFFF FFFFFFFF // Var1 5 elements.

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-28 Assembly Language Overview
Version 1.0

02: FFFFFFFF FFFFFFFF

04: FFFFFFFF 00000000 // inserted zero word.

06: 5A5A5A5A 5A5A5A5A // Var2 starts from an even address.

In code sections:
begin "textFunc" // section starts always with
 // an even address.
 ...

 gr0 = [Var1]; // long instruction is located
 // at an even address.

 gr1 = gr0 << 1; // short instruction.

 // the next instruction should be
 // located at an odd address.

 .align; //alignment directive;
 // assembler inserts null.

 gr2 = not gr1; // short instruction,
 // is located at an even address.
end "textFunc";

2.7.2 Directives .branch and .wait
The .branch directive sets the bit of parallel instructions execution to
‘1’. All instructions following the directive have this bit set to ‘1’ until
the .wait directive is found or the end of file is achieved.

The .wait directive sets the bit of parallel instructions execution to ‘0’.
All instructions following the directive have this bit set to ‘0’ until the
.branch directive is found or the end of file is achieved.

The .branch and .wait directives do not require any additional
parameters. They affect only instructions but not data. They should be
used only inside code sections.

By default the bit of parallel execution is set to ‘0’. Use of the.branch
directive allows the user to switch on the mode of processor instructions
parallel execution. Use of the .wait directive allows the user to return
the processor to the sequential instruction execution mode.

Here is an example of the .branch and .wait directives use:
begin "textFunc"

<MyFunc> // label of the function beginning;
 // bit of parallel execution is set to 0 (by default).
 ar0 = Vector;

.branch; // bit of parallel execution is set to 1.
 // hereafter in all instructions have this bit set to 1.

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-29Assembly Language Overview
Version 1.0

 rep 16 ram = [ar0++]; // vector instruction
 //It is executed for 16 clock cycles

 gr0 = gr1 << 4;// scalar instruction
 // is executed in parallel with the vector instruction.

.wait; // bit of parallel execution is returned to 0.
 // hereafter in all instructions have this bit set to 0.

 gr0 = gr1 << 4; // scalar instruction
 // waits while the vector instruction is not finished.
end "textFunc";

2.7.3 Directives .if and .endif
The .if condition directive defines the beginning of the block of
conditional compiling. It is used together with .endif. The result of the
expression following the .if directive is considered as a Boolean. The
assembler checks the condition and if it is true the assembler compiles
the block.

The conditional compilation unit started with .if should be terminated
with .endif. This means the directives are used as brackets, for instance
.if AAA > 10;

 . . .

.endif;

The block of conditional compiling can be used both in the data sections
and in code sections. It cannot be located outside sections.

Here is an example of a program using the block of conditional
compiling:
const DEBUG = 1; // the constant is used for debug mode.

nobits ".data" // data section.
...

.if DEBUG; // beginning of the block of conditional compiling.

 GenRegs: word[8]; // space to store the values of 8 registers.

.endif; // end of the block of conditional compiling.
end ".data";

...

begin ".text" // code section.
...

.if DEBUG; // beginning of the block of conditional compiling.

 [GenRegs[0]] = gr0; // in the debug mode

 [GenRegs[1]] = gr1; // all general purpose

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-30 Assembly Language Overview
Version 1.0

 [GenRegs[2]] = gr2; // registers are stored to

 [GenRegs[3]] = gr3; // the allocated memory

 [GenRegs[4]] = gr4; // area.

 [GenRegs[5]] = gr5; // In the release mode,

 [GenRegs[6]] = gr6; // when DEBUG = 0 this block

 [GenRegs[7]] = gr7; // is skipped.

.endif; // end of the block of conditional compiling.

...

end ".text";

2.7.4 Directives .repeat and .endrepeat
The .repeat number of repetitions directive defines the
beginning of the block which should be repeated in memory as many
times as the parameter number of repetitions indicates.

The .endrepeat directive is used as a terminator of the instructions
block to be repeated. It does not need additional parameters.

The number of repetitions is defined by a positive constant. Brackets can
be used as an alternative to cycle. But one should remember that a large
number of iterations could largely increase the code volume.

Here is an example of .repeatendrepeat block use:
begin ".text"

 ...

 gr2 = [Mask];

 gr0 = [ar0++];

.repeat 9; // repeat the block of two instructions for 9 times.
 gr0 = [ar0++] with gr1 = gr0 and gr2;

 [ar1++] = gr1;

.endrepeat; // end of the block.
 [ar1++] = gr1;

 ...

end ".text";

No definitions of labels or variables should be found inside the block of
repetitions because those definitions would be textually duplicated and it
would cause a flow of syntax errors.

2.7.5 Directives of Debugging Information

2.7.5.1 Directive .debug_arange

The directive .debug_arange adds an information about an address
range described in a current CU (Compilation Unit) for quick search at

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-31Assembly Language Overview
Version 1.0

the address. The directive has two parameter: an address and a length.
The address is an address expression. Consequently, this parameter may
be assigned by an expression computing as relocatable.

An example:
.debug_arange function, fend - fbegin;

// address range:
// [function .. function + fend - fbegin]

// pertains to the present CU.

2.7.5.2 Directives .debug_die and .debug_die_child

These directives build a new debug information entry DIE in the current
CU. The directive .debug_die builds the DIE as a brother of the
previous DIE. The directive .debug_die builds the DIE as a son of the
previous DIE.

The first parameter of the directives contains an identifier, which is used
as a DIE label to referring to the current DIE from others debugging
directives by the assembler. Nothing concerns this label with a DIE
name, which is an attribute value of DW_AT_name.

The second parameter of the directives contains an integer tag of DIE
type. Values of the various tags are given in the description of the
DWARF format. For each quantity of the DWARF format it defines a
constant in the macro library dwarf_ct.mlb supplied with the library. The
quantity names correspond with the ones used in the standard and begin
with DW_TAG_. Hereinafter in the description the names are used
instead of the numerical values.

The others directive parameters represent a list of descriptions of DIE
attribute:

name, form, value,

name, form, value,…

The attribute name is a constant expression. As a symbolic name it
possible to use the names defined in the DWARF standard (also in
dwarf_ct.mlb). The standard attribute names begin with DW_TAG_.

The form is the reserved word, which is, determined the form of the
attribute value presentation. The possible forms of DIE attribute are
presented in the Table 2-7. The DIE Attribute Forms.

Table 2-7. The DIE Attribute Forms.

FORM DESCRIPTION

ref Reference to another DIE.
addr Address in the destination space.

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-32 Assembly Language Overview
Version 1.0

flag Flag.
uconst Unsigned constant.
sconst Signed constant.
block Data block.

locdesc Location descriptor.
string Character string.

The value is the attribute value, which depending on the attribute form
has a various meaning, see Table 2-8.

Table 2-8. The relation of the DIE attribute values with their form.

FORM MEANING NOTE

ref DIE label (the first parameter any
DIE).

The assembler generate the value of
this attribute as the relative CU
address of DIE, which was being
referred , in a section of an object
file with a name “.debug_info”.

addr Relocatable address in the destination
space.

The assembler handles this address
as every relocatable address in the
program. The attribute value must
be either a label, either a variable,
or an address expression.

flag One bit constant.
uconst,
sconst

Constant interpreted as a number
(correspondingly unsigned or signed).

block Data block, i.e. doesn't interpreted
bite chain, enumerated by coma in
figure brackets.

The values in the figure brackets
must be either constants interpreted
as bytes, or address expressions.

locdesc Instruction sequence of an abstract
stack machine. This sequence defines
a location of the object, described by
DIE.

All sequence must be enclosed in
the figure brackets, besides every
instruction, including three
constants (maybe address
constants), also must be enclosed in
the figure brackets, see example:
{{12,23,24},{24,24,0},...}

string character string. Every symbol strings used in the
debug instructions must be
enclosed in single inverted
commas, otherwise in accordance

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-33Assembly Language Overview
Version 1.0

with assembler every string symbol
will represent by four bytes in the
debugging information.

Examples of pseudo instruction .debug_*die*:
.debug_root_die die1856, DW_TAG_compile_unit,

 DW_AT_name,string,'myfile.c',

 DW_AT_producer,string,'Compiler: version 13',

 DW_AT_compdir,string,'/home/mydir/src',

 DW_AT_language,flag,1, // DW_LANG_C89

 DW_AT_low_pc,addr,start // start – это метка
 DW_AT_high_pc,addr,start + 138;

.debug_die_child die78235, DW_TAG_base_type,

 DW_AT_name,string,'char',

 DW_AT_encoding,flag,8, // DW_ATE_unsigned_char
 DW_AT_byte_size,flag,1;

.debug_die die1234, TAG_pointer_type

 DW_AT_type,ref,die78235;

.debuf_die_endchild;

.debug_die die21, TAG_typedef

 AT_name,string,'POINTER',

 AT_type,ref,die1234;

2.7.5.3 Directive .debug_die_endchild

The directive .debug_die_endchild concludes a current level of a
DIE tree, then a transition to a high level (to a father of last DIE) occurs,
the next DIE will be the brother of the father of last DIE.

This directive doesn’t have parameters.

2.7.5.4 Directives .debug_start_sequence и .debug_end_sequence

The directives .debug_start_sequence and
.debug_end_sequence limit scraps of a continuous progran code. A
directives .debug_line may be located only between these delimiters.

These directives don’t have parameters.

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-34 Assembly Language Overview
Version 1.0

2.7.5.5 Directive .debug_frame_cie

The directive adds a new entry (Call Information Entry) to information
about a call stack.

It has the next parameters:

• information line about a function generating the CIE,

• code alignment,

• data alignment,

• register number of a return address,

• command list of an abstract machine – instructions contained in
the CIE (written in the figure brackets).

An example:
.debug_frame_cie 'func()',2,2,7, {{1,2,3},{4,5,0}};

2.7.5.6 Directive .debug_frame_fde

The directive adds a new entry (Frame Description Entry) to information
about a call stack.

It has the next parameters:

• sequence number of a respective CIE,

• address of a beginning of a given function in the destination
space,

• code length of a function,

• register number of a return address,

• command list of an abstract machine – instructions contained in
the FDE (written in the figure brackets).

An example:
.debug_frame_fde 1, addr, 2056, {{1,2,6},{45,7,4}};

2.7.5.7 Directive .debug_line

The directive adds an information about a line number respective to a
given address.

The directive format:
.debug_line <line number> [,<file number>] [,<column
number>]

The file number must be designated by the directive
.debug_source_file earlier. The file number may be absent meaning
that it is the same at the previous directive .debug_line. The very first
directive .debug_line must possess the file number. The assembler
uses the current address as the line address. The third parameter (column

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-35Assembly Language Overview
Version 1.0

number) may be omitted like the second parameter (file number) in this
case the column number in the given line is considered indefinite.

An example:
.debug_line 10,5,6; // the 10th line of the 5th file

.debug_line 11; // the 11th line of the same file.

2.7.5.8 Directive .debug_pubname

In order to speed up a symbol search the directive .debug_pubname
adds a name of a global symbol and a reference to a DIE, which
including an information about this symbol, to a section
.debug_pubname.

The command has two parameters:

• symbol name in the form of a character string,

• reference to the DIE in the form of a DIE label.

An example:
.debug_pubname 'TBigArray::find',die123;

2.7.5.9 Directive .debug_root_die

The directive builds a Compilation Unit (CU) and adds a root DIE to it.
The root DIE contains all CU attributs as a whole. All the subsequent
directives .debug_die builds a new DIE in a CU. The directives
.debug_root_die and .debug_die have the same parameters, i.e.
both describe a DIE. This directive is separated form .debug_die in
order to logically distinguish the root DIE.

The assembly compiler supports an existence of only one compilation
unit therefore it is impermissible reentry of the directive
.debug_root_die.

2.7.5.10 Directive debug_source_directory

The directive has two parameters:

• directory number,

• directory path.

The file number has an informative meaning and must be equal to a
sequence number of the directive .debug_source_directory. A
command numeration begins with one.

All of source files must be available by one of the directories specified
by the directive .debug_source_directory.

An example:
.debug_source_directory 3,'/user/myfiles/';

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-36 Assembly Language Overview
Version 1.0

2.7.5.11 Directive debug_source_file

The directive .debug_source_file has two parameters:

• file number,

• directory number,

• name,

• size,

• date of a source file.

Though the size and date of file be obligatory but their accuracy isn’t
verified. They can be used by debugger. All of the source files must be
described by the directives .debug_source_file. Pseudo commands
use the file number to indicate files. The directory number must be
specified earlier by the directive .debug_source_directory.

An example:
.debug_source_file 6,3,'myfile.c',1352,19071996;

2.8 Pseudo Functions

Several pseudo-instructions are introduced to the NM6403 assembler.
These pseudo-instructions simplify recording and calculation of constant
expressions of the program and make it easier to read.

Assembler processes pseudo functions on the compilation stage. Pseudo-
functions use a constant or a constant expression as input data. The result
of their work is also a constant, which is then used for variable
initialization, registers modification or addressing.

Pseudo-functions can be regarded as a part of constant expressions.
That’s why they cannot be used in expressions both inside and outside
sections.

The NM6403 assembly language contains the following list of pseudo-
functions:

Table 2-9. Summary Table of Assembly Pseudo Functions

PSEUDO
FUNCTIONS

DESCRIPTION

double Transformation of a 64-bit floating point number into an
internal presentation (IEEE-754).

float Transformation of a 32-bit floating point number into an
internal presentation (IEEE-754).

hiword Obtaining the higher part of a 64-bit word.
loword Obtaining the lower part of a 64-bit word.

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-37Assembly Language Overview
Version 1.0

offset Obtaining the offset of the structure field relatively to the
structure address.

sizeof Obtaining the fundamental or the compound type size.

2.8.1 Function loword
Function loword is used to get the lower part of a 64-bit constant or a
constant expression.

The following example shows the way of the pseudo-function loword
use:
begin ".text"

 ...

 gr0 = loword(0f0f0f0ff0f0hl * 5);

 ...

end ".text";

This function returns the 32-bit value.

Function loword cannot be used in an address expression because
address expressions cannot give the result where the number of
significant bits exceeds thirty-two bits.

2.8.2 Function hiword
Function hiword serves to get the higher part of a 64-bit constant or a
constant expression.

The following example shows the way of the pseudo-function hiword
use:
begin ".text"

 ...

 gr0 = hiword(0f0f0f0ff0f0hl * 5);

 ...

end ".text";

This function returns the 32-bit value.

Function hiword cannot be used in an address expression because
address expressions cannot give the result where the number of
significant bits exceeds thirty-two bits.

2.8.3 Function sizeof
Function sizeof serves to get the real size of the desired data type
taking into account different internal structure alignments.

The function sizeof returns the size of the type measured in 32-bit
words.

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-38 Assembly Language Overview
Version 1.0

The following example shows the way of the pseudo-function sizeof
use:
struct S // declaration of the structure type.

 Var1: word; // short word, a blank space is after

 Var2: long; // it before a long word.
 Var3: word[4];

end S;

begin ".text"

 gr0 = sizeof(S); // the result obtained: 8 words.
end ".text";

The function sizeof calculates the size of types but not variables
themselves. Here are some examples of correct and incorrect use of
sizeof:

The correct use of the function, because a name of the type is given as
the argument:
gr0 = sizeof(S) + 10;

The incorrect use of the function, because a name of the variable is given
as the argument instead of the type name:
gr0 = sizeof(Dest) + 10;

2.8.4 Function offset
The offset function serves to get the offset of the desired field in the
structure taking into account possible internal alignments.

The offset function returns the field offset referred to the structure
beginning address. The offset is measured in 32-bit words.

This function is useful to access the field of the structure addressed to
through a register.

Here is an example of the offset function use:
struct S

 Var1: word;

 Var2: long;

end S;

...

data ".data"

 VarStruct: S = (1, -1l,);

end ".data";

...

begin ".text"

 //Put the structure variable address to the register.

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-39Assembly Language Overview
Version 1.0

 ar0 = VarStruct;
 // Read the field of the structure.
 ar1, gr1 = [ar0 += offset(S, Var2)];

end ".text";

The input parameter of the function offset is a data type but not a
variable name. Here are some examples of correct and incorrect use of
offset:

The correct use of the function, because a name of the type is given as
the argument:
gr0 = offset(S, Var2) + 10;

The incorrect use of the function, because the name of the variable is
given as the argument instead of the type name:
gr0 = sizeof(VarStruct, Var2) + 10;

2.8.5 Functions float and double
Function float converts a variable written in the floating-point format
into an internal 32-bit presentation according to IEEE-754.

Function double converts a variable written in the double format into an
internal 64-bit presentation according to IEEE-754.

The processor NM6403 does not support hardware floating-point
operations on the hardware level. That’s why all the floating-point
arithmetic is software implemented in the form of a library included into
libc.lib.

The assembler uses the format IEEE-754 for internal presentation of
floating-point and double numerals.

The floating point and double point format representations used in the
NM6403 assembly language are:
[+|-]num[.numE][+|-]num, where num – decimal numbers.

Or
[+|-]num.num

Here are some examples of the functions float and double use:
Float1: word = float(1.57) - float(-4.32E2);

Float2: word = float(-4.98) + float(5.51E2);

Float2: word = float(-2.23E-3) + float(5.51E-2);

Double1: long = double(-2.34560976E-18);

In the given examples all possible formats of floating-point and double
presentation supported by the assembler are shown.

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-40 Assembly Language Overview
Version 1.0

2.9 Using Macros

2.9.1 Purpose of Macros
If user uses a collection of some command repeatedly he can simplify his
action using a macro. A macro is a series of assembler commands and
instructions that user groups together as a single command to accomplish
a task automatically. Here are some typical uses for macros:

• To speed up routine editing and formatting

• To combine multiple commands

• To automate a complex series of tasks

• To make a program more clear

A user can store its macros in an own macro library.

2.9.2 Syntax of Macros
Macro definition:
macro macro_name ([parameter1 [, parameter2 ...]])
 entity_sequence
end macro_name;

Macro call:
macro_name([parameter1 [, parameter2 ...]]);

Declaration of an external macro:
import [macro_name1 [, macro_name2 ...]] from library_name;

2.9.3 Description
A macro_name is an arbitrary identifier. Formal arguments should be
also identifiers.

A entity_sequence should be the sequence of complete syntactic
units in assembly language: declarations, definitions, instructions, macro
inclusion and etc (except sections). Syntax and semantic verification of a
macro are performed only at the macro substitution taking into account
the environment and the actual arguments of a macro call.

The next may be used as the formal arguments of macro call:

• Registers

• Indefinite identifiers

• Constant expression

The registers and the identifiers are passed by name the constant
expressions are passed only by value. The constant expressions are
precomputed and so they of the macro substitution are a number or an
address, which are the results of the calculating.

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-41Assembly Language Overview
Version 1.0

Note It is impossible to pass a defined program entity by name into the macro.
For example, it is impossible to pass a name of a compile time variable
which is varied in the macro.

Note The pass of indefinite identifiers allows to create a new program entity
into the macro by next way:
macro entry_point(name)

<name>

 nul 10;

 call subroutine;

end entry_point;

Macro definitions may be arranged at any place of a program but the
place outside the sections at the beginning of a file is more preferably.

Macro substitutions are allowed at any place when the commands from a
macro are permitted to use.

Both an evident and an indirect recursive macro call of the same macro
are forbidden.

2.9.4 Using Label in Macros
A restriction exists for using a label in the macros that the macro with the
label in the body may be included only once, because a error –
“Redefining a label” will be occur in the next inclusion. In order
to use the label in the macros should be declared with a reserved word
own. The label declared in that way is processed by a particular mode so,
as at the every macro substitution this label will have a unique name
among all substitution of this macro. For example:
macro FEQ (Res, Arg1, Arg2)

extern FCmp :label;

own Cont :label;

 ar5 = sp;

 sp += 2;

 [ar5++] = Arg1;

 [ar5] = Arg2;

 call FCmp;

 if carry delayed skip Cont

 with Res = false noflags;

 sp -= 2;

 // cond. skip Cont

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-42 Assembly Language Overview
Version 1.0

 if <>0 skip Cont;

 Res++;

<Cont>

end FEQ;

Macro FEQ() using the own label Cont for inner branch may be
included more than one.

Using the reserved word own is permitted only in the macros.

2.9.5 Importing Macros from Marco Library
The import from directive enables use the macros from an external
macro library.

By means of the import directive the declaration of the external macros
directs include definitions of the specified macros from an external
macro library to the assembler. A filename of the macro library doesn’t
contain a pathspec. If a filename extension of macro library is standard
(.mlb) the filename may be specified without the extension. If the list of
the included macros is omitted all macros will be included from specified
macro library.

Here examples of declaration of external macros:
import mode_constants from com_decl.mlb;

import mode_constants, irqtab_layout from
com_decl.mlb;

import from com_decl.mlb;

The first declaration includes a macro from the macro library
com_decl.mlb; the second declaration includes two macros from the
macro library and the third declaration includes all macros of the macro
library.

Assembler searches the macro libraries at first in a current directory, then
in directories specified in command line by means key -I.

Note For details about a macro library creation by means of the assembler
and its operation mode see NeuroMatrix NM6403 SDK.
Programmer’s Reference, the chapter Assembler.

Note The situation may be occurring when macros from the macro library of
an old assembler version are interpreted incorrectly by the new
assembler release. In this case it is necessary to recompile the macro
library.

AAsssseemmbbllyy LLaanngguuaaggee SSyynnttaaxx OOvveerrvviieeww

2-43Assembly Language Overview
Version 1.0

Assembly Language Overview
Version 1.0

3 Registers

3.1 Primary Register File ... 3-3
3.1.1 Address Registers .. 3-3
3.1.2 General-purpose Registers...3-4
3.1.3 Register Pairs ... 3-4

3.2 PERIPHERAL CONTROL REGISTER FILE ..3-5
3.2.1 Register gmicr... 3-6
3.2.2 Registers of communication port control (ica, icc) (oca, occ) 3-13
3.2.3 Register intr .. 3-19
3.2.4 Register lmicr .. 3-23
3.2.5 Register pc.. 3-24
3.2.6 Register pswr.. 3-25
3.2.7 Timer Counters t0, t1 ...3-32

3.3 VECTOR REGISTER FILE ..3-33
3.3.1 Registers f1cr and f2cr..3-34
3.3.2 Register nb1(nb2) ... 3-40
3.3.3 Register sb (sb1 and sb2)...3-44
3.3.4 Register vr .. 3-48
3.3.5 Register-container afifo...3-49
3.3.6 Logical Register-Container data ...3-55
3.3.7 Register-Container ram...3-56
3.3.8 Register-Container wfifo ...3-58

RReeggiisstteerrss

3-2 Assembly Language Overview
Version 1.0

RReeggiisstteerrss

3-3Assembly Language Overview
Version 1.0

This section describes three register files of the NeuroMatrix® NM6403:

• Primary register file;

• Peripheral control register file;

• Vector register file.

3.1 Primary Register File
The primary register file provides 16 registers in a multiport register file.
This file consists of a set of address registers and a set of general-purpose
registers, i.e. the registers that are used in most of the processor
computing operations.

There are eight address registers and eight general-purpose registers (see
Table 3-1). All the registers are 32-bit read/write accessible registers.

Table 3-1. Primary Register File of NeuroMatrix NM6403

ADDRESS REGISTERS GENERAL-PURPOSE REGISTERS

ar0 gr0

ar1 gr1

ar2 gr2

ar3 gr3

ar4 gr4

ar5 gr5

ar6 gr6

ar7(sp) gr7

3.1.1 Address Registers
The primary function of address registers is to support the variety of
indirect addressing modes. The address registers can not be used as
general-purpose registers because they do not participate in
arithmetic/logical operations.

Address registers are divided into two groups. The first group includes
ar0…ar3, and the second one - ar4…ar7. This division is due to two
data address generators (DAG). As illustrated in Figure 1-3, the first
group of the registers is mapped to the DAG1, the second one to the
DAG2.

There are some limitations on using the address registers from different
groups in the same processor instruction. More information about this
will be given in the section describing operations of address registers
modification (see 5.1.7 on page 5-16).

Address registers are used only in the left part of an assembly instruction.

RReeggiisstteerrss

3-4 Assembly Language Overview
Version 1.0

Here are some examples of assembly instructions containing address
registers:
ar0 = ar5; // copying

ar2 = ar3 + gr3; // modification

[ar4++] = gr7 with gr7 -= gr4; // store into memory

The processor uses the address register ar7 as the pointer to the top of
the system stack. This means that ar7 is modified automatically when a
sub-routine call or an interrupt occurs, and when return from a sub-
routine or from an interrupt takes place. The synonym of ar7 is
sp(Stack Pointer). The register sp can be used instead of ar7 and
vice versa, for example, the following assembly instructions mean the
same:
ar5 = ar7 – 2;

or
ar5 = sp – 2;

3.1.2 General-Purpose Registers
The general-purpose registers are capable of storing and supporting
operations on 32-bit numbers. The general-purpose registers can be
operated upon by ALUs and can be used to support some indirect
addressing modes, for example
 [gr0] = gr4; // store the contents of gr4 into memory

 // at the address contained in gr0.

Here are some examples of general-purpose registers:
gr0 = gr5; // copying.

gr2 = gr1 + gr3; // modification.

[ar4++] = gr7 with gr7 -= gr4 ; // writing to memory

Note NeuroMartix NM6403 RISC-core does not contain any selected register
to provide loop counter.

3.1.3 Register Pairs
An address register and a general-purpose register with the same number
are referred to as a register pair. There are eight register pairs. The
register pairs are used to support operations on 64-bit words like
load/store or some types of addressing modes.

Here are some examples of assembly instructions where a register pair is
used:
// Load a 64-bit word from memory to the register pair
ar0, gr0 = [ar1++];

RReeggiisstteerrss

3-5Assembly Language Overview
Version 1.0

or
// Vector instruction. Load eight 64-bit words from external memory
// and perform bitwise logical complement of each word. The
// example shows use of a register pair for indirect addressing.
rep 8 data = [ar3+=gr3] with not data;

An address register and a general-purpose register with different indexes
cannot be referred to as a register pair, for example:
ar0, gr1 = [ar1++]; // incorrect instruction.

[ar0+=gr1] = gr4; // incorrect instruction.

3.2 Peripheral Control Register File
The peripheral control register file registers are used to control external
memory interfaces, communication ports, DMA co-processors, timers
and so on.

Table 3-2. Peripheral Control Register File of NeuroMatrix NM6403

NAME DESCRIPTION NOTE

gmicr Global Memory Interface Control Register. It can be
programmed to control global memory parameters like
page size, address range, wait states, and other
operations that control global memory interface.

32 bits.

ica0, icс0 Address register and data counter. They control the 0th
communication port in input mode.

Register pair,
32 bits each.

ica1, icc1 Address register and data counter. This register pair
controls the 1st communication port in input mode.

Register pair,
32 bits each.

intr Register of interrupt requests and direct memory
access (DMA). It shows the interrupts state, DMA co-
processors state, and state of internal buffers of the
Vector Unit.

32 bits.

lmicr Local Memory Interface Control Register. It can be
programmed to control local memory parameters like
page size, address range, wait states, and other
operations that control local memory interface.

32 bits.

oca0, ocс0 Address register and data counter. They control the 0th
communication port in output mode.

Register pair,
32 bits each.

oca1, occ1 Address register and data counter. They control the 1st
communication port in output mode.

Register pair,
32 bits each.

pc Program counter. It contains the address of the next
instruction to be fetched.

32 bits.

pswr Processor State Word Register. It controls external
memory share modes, Timer pin, communication

32 bits.

RReeggiisstteerrss

3-6 Assembly Language Overview
Version 1.0

ports, interrupt masks, condition flags.
t0, t1 Timer counter registers. 32 bits.

3.2.1 Register gmicr
Field BOUND ...3-6
Field PAGE1 ..3-7
Field PAGE0 ..3-8
Field TYPE1...3-8
Field TYPE0...3-8
Field TIME1 ...3-9
Field TIME0 ...3-11
Field TRAS ..3-11
Field RDY1 ..3-11
Field RDY0 ..3-12
Field SHMEM...3-12

The gmicr is a 32-bit register that can be programmed to control global
memory interface by defining the:

• page size used for the two memory banks at each port;

• address ranges over which memory banks are active;

• wait states;

• other operations that control the memory interface.

Table 3-3 describes the fields in this register.

Register gmicr is accessible both for reading and for writing.

The gmicr must be set up before any application starts executing.
Usually the loader program, which is included to the load and exchange
library, sets it up.

Note The user can change the contents of gmicr register himself. However it
is necessary to be careful because an incorrectly configured register will
not allow the processor to correctly access global memory. It can cause
the program halt or incorrect execution.

Table 3-3. Global Memory Interface Control Register (gmicr)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BOUND PAGE1 PAGE0 TYPE1 TYPE0 TIME1 TIME0 TRAS RDY1 RDY0 SHMEM

Field BOUND

Field BOUND specifies address space configuration. It determines the size
and address range of bank0, presence of the bank 1, its size and address
range (bank 0 is always present). The bits occupied by the field in gmicr
register are shaded:

RReeggiisstteerrss

3-7Assembly Language Overview
Version 1.0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Table 3-4 contains information about the possible variants of global
memory configuration.

Table 3-4. Division of Global Bus Address Space into Banks 0/1 According to BOUND

BOUND SIZE OF
BANK0

(64
BITS)

ADDRESS SPACE
OF

BANK0

SIZE OF
BANK1

(64
BITS)

ADDRESS SPACE
OF

BANK1

0000 215 = 32К 80000000 - 8000FFFF 32К 80010000 - FFFFFFFF

0001 216 = 64К 80000000 - 8001FFFF 64К 80020000 - FFFFFFFF

0010 217 = 128К 80000000 - 8003FFFF 128К 80040000 - FFFFFFFF

0011 218 = 256К 80000000 - 8007FFFF 256К 80080000 - FFFFFFFF

0100 219 = 512К 80000000 - 800FFFFF 512К 80100000 - FFFFFFFF

0101 220 = 1М 80000000 - 801FFFFF 1М 80200000 - FFFFFFFF

0110 221 = 2М 80000000 - 803FFFFF 2М 80400000 - FFFFFFFF

0111 222 = 4М 80000000 - 807FFFFF 4М 80800000 - FFFFFFFF

1000 223 = 8М 80000000 - 80FFFFFF 8М 81000000 - FFFFFFFF

1001 224 = 16М 80000000 - 81FFFFFF 16М 82000000 - FFFFFFFF

1010 225 = 32М 80000000 - 83FFFFFF 32М 84000000 - FFFFFFFF

1011 226 = 64М 80000000 - 87FFFFFF 64М 88000000 - FFFFFFFF

1100 227 = 128М 80000000 - 8FFFFFFF 128М 90000000 - FFFFFFFF

1101 228 = 256М 80000000 - 9FFFFFFF 256М A0000000 - FFFFFFFF

1110 229 = 512М 80000000 - BFFFFFFF 512М C0000000 - FFFFFFFF

1111 230 = 1G 80000000 - FFFFFFFF 0 -

Field PAGE1

Field PAGE1 specifies memory page size for the bank 1. The bits
occupied by this field in gmicr register are shaded:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Table 3-5 contains information about possible page sizes supported by
the processor.

Table 3-5. Memory Page Sizes According to Field PAGE(0,1)

FIELD PAGE(0,1) MEMORY PAGE SIZE
(IN 64-BIT WORDS)

0000 28 = 256 words
0001 29 = 512 words

RReeggiisstteerrss

3-8 Assembly Language Overview
Version 1.0

0010 210 = 1К words
0011 211 = 2К words
0100 212 = 4К words
0101 213 = 8К words
0110 214 = 16К words
0111 215 = 32К words
1000 216 = 64К words
1001 217 = 128К words
1010 218 = 256К words
1011 219 = 512К words
11хх Reserved

Note Combinations of bits 1000 and higher (the last 5 rows of the table) are
valid only for static memory (SRAM).

Field PAGE0

Field PAGE0 specifies memory page size for the bank 0. The bits
occupied by this field in gmicr register are shaded:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

The possible contents of the field PAGE0 are listed in Table 3-5.

Field TYPE1

Field TYPE1 defines the memory type of bank 1. The bits occupied by it
in gmicr register are shaded:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

The field assumes four different values.

00 Access to static memory (SRAM).

01,10,11 Access to dynamic memory (DRAM).

The more detailed information on different types of dynamic memory
can be found in the document: NeuroMatrix®NM6403 Processor.
User’s Guide.

Field TYPE0

Field TYPE0 defines the memory type of bank 0. The bits occupied by it
in gmicr register are shaded:

RReeggiisstteerrss

3-9Assembly Language Overview
Version 1.0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

The field assumes four different values.

00 Access to static memory (SRAM).

01,10,11 Access to dynamic memory (DRAM).

The more detailed information about different types of dynamic memory
can be found in the document: NeuroMatrix®NM6403 Processor.
User’s Guide.

Field TIME1

Field TIME1 specifies software wait-state count for the bank 1 accesses.
Defines the number of cycles to use when software wait states are active.
The bits occupied by this field in gmicr register are shaded:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Memory access procedure may consist of up to five phases. Types of
these phases and their programmable duration are given in Table 3-6.

Table 3-6. Phases of Memory Access Cycle

PHASE OF MEMORY ACCESS CYCLE PHASE DURATION

NAME DESCRIPTION DESIGNATIO
N

DRAM SRAM

RP
Phase of discard of signals

CS0RAS0 / and CS1RAS1 / . TRP (1-2)T 1T

PAGE Phase of memory page addressing.

TPAGE (1-2)T 1T

CP Passive phase of memory cell
addressing. TCP (0-1)T (0-3)T

CA Active phase of memory cell
addressing. TCA (1-2)T (1-4)T

BE Phase of memory entering the high-
impedance state. TBE (1-2)T (1-2)T

There are some comments and reference information on the statements of
the table:

• Abbreviation T corresponds to one processor clock cycle.

• Phases RP and PAGE take part in the memory access procedure only
when the processor accesses different memory page.

• Phase CP is optional. If TCP=0 then this phase does not take part in the
memory access procedure.

RReeggiisstteerrss

3-10 Assembly Language Overview
Version 1.0

• Phase BE takes part in memory access procedure only if a write to
memory command goes right after read from memory command.

The format of the field TIME1 depends on memory type, whether SRAM
or DRAM is used.

Table 3-7 shows the field TIME1 format in case of use the static memory
SRAM, and Table 3-8 shows its format in case the dynamic memory
DRAM is used.

Table 3-7. Format of Fields TIME0 and TIME1 of gmicr(lmicr) Register for SRAM

BITS OF
TIME1

BITS OF
TIME0

DESIGNATIO
N

PHASE DURATION

15 10 TBE 0
1

2Т
1Т

14

13

9

8
TCP

00
01
10
11

3Т
2Т
1Т
0Т

12

11

7

6
TCA

00
01
10
11

4Т
3Т
2Т
1Т

In this sense, zero wait-state is generated by the processor to access
SRAM when the field TIME1(TIME0) is equal to 111112.

Table 3-8. Format of Fields TIME0 and TIME1 of gmicr(lmicr) Register for DRAM

BITS OF
TIME1

BITS OF
TIME0

DESIGNATIO
N

PHASE DURATION

15 10 TBE 0
1

2Т
1Т

14 9 TPAGE 0
1

2Т
1Т

13 8 TCP 0
1

1Т
0Т

12 7 TRP 0
1

2Т
1Т

11 6 TCA 0
1

2Т
1Т

RReeggiisstteerrss

3-11Assembly Language Overview
Version 1.0

Field TIME0

Field TIME0 specifies software wait-state count for the bank 0 accesses.
Defines the number of cycles to use when software wait states are active.
The bits occupied by this field in gmicr register are shaded:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

The format of the field TIME0 is the same as that of the field TIME1.
Refer to Table 3-7 and Table 3-8 for more information.

Field TRAS

Field TRAS specifies duration of the active level of RAS signal. The bits
it occupies in gmicr register are shaded:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Table 3-9 reflects the dependency of RAS signal active level duration on
TRAS contents.

Table 3-9. Duration of RAS Signal Active Level

 TRAS DURATION IN CYCLES (TRAS)
00 4
01 3
10 2
11 1

Note If SRAM memory type is indicated in both fields TYPE0 and TYPE1, the
field TRAS contents do not care.

The more detailed information about dynamic memory regeneration can
be found in the document: NeuroMatrix®NM6403 Processor. User’s
Guide.

Field RDY1

Field RDY1 specifies the condition of finish of the bank1 memory access
procedure:

• 0 – only due to the internal counter;

• 1 –due to the internal counter and the external READY signal.

The bits it occupies in gmicr register are shaded:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RReeggiisstteerrss

3-12 Assembly Language Overview
Version 1.0

Field RDY0

Field RDY0 specifies the condition of finish of the bank0 memory access
procedure:

• 0 – only due to the internal counter;

• 1 –due to the internal counter and the external READY signal.

The bits it occupies in gmicr register are shaded:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Note If one of multiprocessor configuration modes is selected in the field
SHMEM (see below), the contents of the fields RDY1 and RDY0 do not
care.

Field SHMEM

The NeuroMatrix® NM6403 supports construction of dual processor-
based shared memory systems. There are three modes of shared memory
interface. The special terms are introduced to describe those modes.

Own memory bank - this term means that right after RESET this bank is
owned by the processor. To access the own memory bank the processor
doesn’t need to ask the permission from the other processor.

The other’s memory bank - this term means that right after RESET this
bank is not owned by the processor. To access the other’s memory bank
the processor must first ask the permission and only after it has got it the
processor accesses that bank.

Common memory bank - this term means that the memory bank is
accessible for both processors, but is not owned by any one. Each of the
processors must ask the permission to access the memory and if the other
processor does not access the memory at that moment the processor will
be able to access the bank.

Field SHMEM specifies the possible configurations of shared global bus
interface:

• 00 – multiprocessor configuration of the first type (bank0 -
"common", bank1 - "common");

• 01 - multiprocessor configuration of the second type (bank 0 - "own",
банк 1 - "common");

• 10 - multiprocessor configuration of the third type (bank 0 - "own",
банк 1 - "the other’s");

• 11 – one-processor configuration (no memory is shared).

The bits it occupies in gmicr register are shaded:

RReeggiisstteerrss

3-13Assembly Language Overview
Version 1.0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

The more detailed information about the shared memory configurations
can be found in the document: NeuroMatrix®NM6403 Processor.
User’s Guide.

3.2.2 Registers of Communication Port Control (ica, icc) (oca, occ)

NM6403 Communication Ports ..3-13
Communication port status after reset ...3-14
Format of Transmitted Data ...3-14
Receive Data through a Communication Port ..3-14
Send Data through a Communication Port...3-16
Waiting for the End of Data Transmit through a Communication Port..........................3-17
Simultaneous Data Transfer through a Communication Port3-18
Disabling Data Transfer through a Communication Port ..3-18

NM6403 Communication Ports

The NeuroMatrix® NM6403 has got two communication ports hardware
compatible to TMS320C4x. Each of them provides a bidirectional
communication interface to other NM6403, or C4x, or external
peripherals.

NM6403 contains two direct memory access (DMA) coprocessors to
manage communication ports. DMA coprocessors are programmable
peripherals that support data transferring through the communication
ports in asynchronous mode. The DMA coprocessors perform data
transfer to and from anywhere in the processor’s memory map. Each
DMA coprocessor serves the corresponding communication port for
input and output.

Coprocessors work in parallel with the central processor unit (CPU).
Moreover, they are independent of each other. For example, it is possible
to organize the user program so that the processor could simultaneously
receive one portion of data through the zero communication port, execute
calculations over the second portion and send the third portion through
the first communication port to another processor.

Both communication ports are equivalent. The only difference is in their
initial state after RESET, when the 0th communication port is set to the
output mode and the 1st communication port – to the input mode.

Each of the communication ports can be switched to any of the two states
by a user’s program.

The following peripheral control registers manage the DMA
coprocessors:

oca0 and occ0 – address and counter registers controlling DMA0 in the
output mode;

ica0 and icc0 – address and counter registers controlling DMA0 in the
input mode;

RReeggiisstteerrss

3-14 Assembly Language Overview
Version 1.0

oca1 and occ1 – address and counter registers controlling DMA1 in the
output mode;

ica1 and icc1 – address and counter registers controlling DMA1 in the
input mode;

The registers, which names start with i, are used in input mode and those
starting with о are used in the output mode.

Communication Ports State after RESET

After RESET, the communication port 0 turns to the output mode and the
port 1 – to the input mode. This information is important when the
processor is connected with other processors or external peripherals.
When two processors are connected through communication ports, one
should make sure that at the moment of power on the communication
port of the first processor must turn to the input mode while the port of
the other one must be in the output mode.

For example, when two NM6403 are linked through a communication
port it is necessary to connect the 0th port of one processor to the 1st port
of the other one.

CAUTION At reset, port 0 is configured as output port and port 1 is configured as
input port. When ports of two processors are interconnected it is
necessary to connect the port of one to a port of the other that would be
in the opposite direction at reset.

Format of Transmitted Data

The processor NM6403 is able to send/receive only 64-bit data through
communication ports. To achieve compatibility with C4x, it is necessary
to exchange 32-bit data blocks of even size.

NM6403 sends/receives words of data in the order from low bits to high
bits, i.e. the low bits are transmitted first and then the high bits.

Thus, when C4x receives data from NM6403, first the low 32-bit word
comes, then the high one and on the contrary, the word that came from
C4x becomes the low part of a 64-bit word in NM6403.

Receiving Data Through a Communication Port

In the input mode a DMA coprocessor is controlled by registers ica0
and icc0 (hereafter all comments are given for the 0th communication
port registers, however all of them are also correct for the 1st
communication port registers).

The ica0 register determines the address in the memory of NM6403,
starting from which the array of received data will be located.

The icc0 register is a counter. It specifies the number of 64-bit words to
be received. The register counts forward. The communication port stays
in the input mode until the counter achieves zero. That’s why to receive

RReeggiisstteerrss

3-15Assembly Language Overview
Version 1.0

the desired number of long words it is necessary to initialize the counter
with a negative value. Here is an example that receives 100 long words
through the comm. port 0:
nobits "data"

 InputBuff: long[100];

end "data";

begin "text"

 ...

 ica0 = InputBuff; // address of the input buffer.

 icc0 = -100; // start receiving 100 long words.
 ...

end "text";

The DMA coprocessor starts receiving data right after the register icc0
is initialized, and receives data until the counter is equal to 0. The
counter icc0 is increased by 1 after each word is received.

There are two types of a communication port initializing in the input
mode:

• direct initialization. This is the way of initialization as it is shown in
the example above;

• external initialization. In this case DMA coprocessor, having received
the first 64-bit word, stores the low thirty-two bits to ica0 regarding
them as the address in memory, and stores the higher bits to icc0
treating them as the number of words to receive.

The bit CP0I of the field CP0 control of the register pswr (bit 22) and
the bit CP1I of the field CP1 control (bit 25) define which type of
initialization is selected for the 0th and 1st comm. port respectively (see
paragraph 3.2.6 page 3-25).

After system RESET all fields of register pswr are equal to zero, so by
default the communication ports are tuned on direct initialization.

The following example shows how to select external initialization of the
0th comm. port in the input mode:
begin "text"

 ...

 pswr set 400000h; // the 22-nd bit setting to 1.
 ...

end "text";

After the bit defining the communication port initialization type is set,
the DMA coprocessor is ready to receive data. As soon as the first
portion of data is sent from the opposite side of the link, the DMA starts

RReeggiisstteerrss

3-16 Assembly Language Overview
Version 1.0

receiving data and the first word is used by the DMA to initialize the
registers ica0 and icc0.

Sending Data Through a Communication Port

In output mode a DMA coprocessor is controlled by registers oca0 and
occ0 (hereafter all comments are given for the 0th communication port
registers, however all them is also correct for the 1st communication port
registers).

The oca0 register determines the address in the memory of NM6403,
starting from which the array of data to send is located.

The occ0 register is a counter. It specifies the number of 64-bit words to
be sent. The register counts forward. The communication port stays in
output mode until the counter achieves zero. That’s why to send the
desired number of long words it is necessary to initialize the counter with
a negative value. Here is the example that sends 100 long words through
the comm. port 0:
nobits "data"

 OutputBuff: long[100];

end "data";

begin "text"

 ...

 oca0 = OutputBuff; // address of the array to send.

 occ0 = -100; // start sending 100 long words.
 ...

end "text";

The DMA coprocessor starts sending data right after the register occ0 is
initialized, and sends data until the counter is equal to 0. The counter
occ0 is increased by 1 after each word is sent.

If the comm. port on the opposite side of the link is set to the external
initialization mode, the sending processor should first send the address of
an array in the destination memory and the size of that array. Only after
that it is possible to send the array itself. The array size is given without
taking into account the first 64-bit word.

Example:
nobits "data"

 OutputBuff: long[101];

end "data";

begin "text"

 ...

 ar0 = OutputBuff;

RReeggiisstteerrss

3-17Assembly Language Overview
Version 1.0

 ar4 = 80000000h; // address of an array in the destination
 // memory.

 gr4 = -100; // array size.

 [ar0] = ar4, gr4; // initialization parameters are stored into the
 // first word the array to be sent.

 oca0 = ar0; // address of an array in the source memory.

 occ0 = -101; // start sending 101 long words.
 ...

end "text";

Waiting for the End of Data Transmittion Through a Communication Port

There are two criteria indicating the end of data transmission through a
communication port.

The first criterion is the interrupt generated at the end of transmission. It
gives a hundred percent guarantee that the data exchange process is
complete.

The second criterion is waiting for the zero value in the counter register.
It is a simple way of checking the end of data transmission. It is used in
most cases.

Example:
begin "text"

 oca0 = OutputBuff;

 occ0 = -100;

 ...

<Loop> // label of the waiting loop start.

 gr0 = occ0; // the contents of the counter is read.

 gr0; // flags of conditional branch are set.

 if < goto Loop; // the loop is repeated until the
 // осс0 counter becomes zero.
 ...

end "text";

Note In case of external initialization the counter register inquiry cannot be
used as the method of waiting for the transfer finish. External
initialization is an asynchronous process; that is why the receiving
processor does not know when the transfer starts. The counter register
check for zero can cause an error because at the moment of check it is
unknown if the data receiving has ended or it has not started yet. In both
cases the counter value is zero. With the external initialization the only
way of checking the transfer finish is an interrupt.

RReeggiisstteerrss

3-18 Assembly Language Overview
Version 1.0

Simultaneous Data Transfer Through a Communication Port

The NM6403 DMA coprocessor has two pairs of registers. The first one
is used to control data input and the second one for data output. These
pairs are independent of each other. So nothing prevents simultaneous
initialization of a port for input and for output.

Simultaneous initialization of a communication port for input and for
output is possible, but it will not give any profit in the data exchange
speed. This possibility is supported for compatibility with C4x.

If a communication port is initialized both for input and for output the
device on the opposite size of the link determines which mode to chose.
If the transfer in one direction has started it should be finished and only
after that the transfer in the opposite direction is possible.

Disabling Data Transfer Through a Communication Port

The processor allows the user to disable/enable data transfer through a
communication port. Disabling can be set both before data exchange and
during the exchange. In the last case the corresponding communication
port will be “frozen” until the disabling bit in the pswr register is cleared.

Setting the bit ICH0 of the field CP0 control in the register pswr
(bit 21) makes disabled the input through the communication port 0.

Setting the bit ICH1 of the field CP1 control in the register pswr
(bit 24) makes disabled the input through the communication port 1.

Setting the bit OCH0 of the field CP0 control in the register pswr
(bit 20) makes disabled the output through the communication port 0.

Setting the bit OCH1 of the field CP1 control in the register pswr
(bit 23) makes disabled the output through the communication port 1.

Here is an example that shows how to make disable the data input
through the communication port 1:
begin "text"

 ...

 pswr set 1000000h; // the 24-th bit setting to 1.
 ...

end "text";

The communication port becomes enabled for transfers by clearing the
corresponding bit of pswr. Here is an example that shows how to make
enable the data input through the communication port 1:
begin "text"

 ...

 pswr clear 1000000h; // clear the 24-th bit of pswr.
 ...

end "text";

RReeggiisstteerrss

3-19Assembly Language Overview
Version 1.0

3.2.3 Register intr

Field BS ...3-20
Field DMAR..3-20
Field PS ...3-21
Field AFIFO_VAL...3-21
Field RAM_VAL ...3-21
Field VPF ...3-22
Field INTEREQ ..3-22

The intr is a 32-bit register that is used for the information purposes
because its contents can not be changed. It is the only read accessible
register. An attempt to write to the register intr from assembler will
cause a syntactic error.

It contains information on interrupt requests and on DMA requests.

The current value of the intr reflects the interrupts request and DMA
request status. The internal fields of the register and their default contents
are given in Table 3-10. The bits marked with 'X' have no effect.

Table 3-10. Register of Interrupt Request and DMA Request (INTR)

BIT FIELD BIT NAME DEFAULT VALUE
31
30 BS

GBS
LBS

0
1

29
28
27
26

DMAR

IC1DR
IC0DR
OC1DR
OC0DR

0
0
1
1

25
24 PS

CP1S
CP0S

1
0

23
24
21
20
19
18

AFIFO_VAL

EMPTY
-
-
-
-
-

0
Х
Х
Х
Х
Х
Х

17
16
15
14
13

RAM_VAL

-
-
-
-
-

Х
Х
Х
Х
Х

12
11
10
9

VPF

EMPTA
FULLA
EMPTW
FULLW

1
0
1
0

8
7
6
5
4
3
2
1
0

INTREQ

T0R
SPR
VPR
INR
IC1R
IC0R
OC1R
OC0R
T1R

0
0
0
0
0
0
0
0
0

RReeggiisstteerrss

3-20 Assembly Language Overview
Version 1.0

More detailed description of each field value of intr register value is
given below.

Field BS

Field BS reflects information whether the memory bank0 on the local and
global buses belong to the processor at the moment. The bits it occupies
in the intr register are shaded:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Description of the field bits follows:

BIT NAME DESCRIPTION

31 GBS The global bus state:

• 0 - the bus belongs to the processor at the moment;

• 1 - the bus does not belong to the processor at the
moment.

30 LBS The local bus state:

• 0 - the bus belongs to the processor at the moment;

• 1 - the bus does not belong to the processor at the
moment

Field DMAR

Field DMAR contains direct memory access requests from the processor
communication ports. When the request appears the corresponding bit is
set to one; if the request is discarded or there is no request the bit is equal
to zero. The bits this field occupies in the intr register are shaded:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Description of the field bits follows:

BIT NAME DESCRIPTION

29 IC1DR Direct memory access (DMA) request from the data
input channel of the port 1.

28 IC0DR DMA request from the data input channel of the port 0.

27 OC1DR DMA request from the data output channel of the port 1.

26 OC0DR DMA request from the data output channel of the port 0.

Note When a DMA request appears, the corresponding bits of the register
intr are automatically set.

RReeggiisstteerrss

3-21Assembly Language Overview
Version 1.0

The bits are automatically cleared when memory access is allowed.

Field PS

Field PS contains information about the current direction of data transfer
through the NM6403 communication ports. The bits it occupies in the
intr register are shaded:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Description of the field bits follows:

BIT NAME DESCRIPTION

25 CP1S Current direction of data transfer through the port 1:

• 0 - output mode;

• 1 - input mode.

24 CP0S Current direction of data transfer through the port 0:

• 0 - output mode;

• 1 - input mode.

Field AFIFO_VAL

Field AFIFO_VAL contains information about the number of 64-bit words
in afifo after the current vector instruction execution has completed.
The bits it occupies in the intr register are shaded:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Description of the field bits follows:

BIT NAME DESCRIPTION

23 EMPTY This bit shows whether the afifo is empty or not:

• 0 – afifo is empty;

• 1 – afifo is not empty and the number of words
stored in it is defined by the bits 22 ... 18.

22
21
20
19
18

 The number of words stored in afifo within the range
from one to thirty-two. Here:

00000 corresponds to one 64-bit word;
00001 corresponds to two 64-bit words;
.....
11111 corresponds to thirty-two 64-bit words.

Field RAM_VAL

Field RAM_VAL contains information about the number of 64-bit words in
the ram (internal RAM FIFO of the Vector Unit) after the current vector

RReeggiisstteerrss

3-22 Assembly Language Overview
Version 1.0

instruction execution has been completed. The bits it occupies in the
intr register are shaded:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Description of the field bits follows:

BIT DESCRIPTION

17
16
15
14
13

The number of words in RAM, in the range from 1 to 32. Here:

00000 corresponds to one 64-bit word;
00001 corresponds to two 64-bit words;
.....
11111 corresponds to thirty-two 64-bit words.

Field VPF

Field VPF contains information about the filling degree of the buffers
WFIFO and AFIFO of the Vector Unit. The bits it occupies in the intr
register are shaded:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Description of the field bits follows:

BIT NAME DESCRIPTION

12 EMPTA Flag of data presence in the AFIFO buffer:

• 0 - AFIFO contains data;

• 1 - AFIFO is empty.

11 FULLA Flag of the filling degree of the AFIFO buffer:

• 0 - AFIFO is semi filled;

• 1 - AFIFO is filled up.

10 EMPTW Flag of presence of data in the WFIFO buffer:

• 0 - WFIFO contains data;

• 1 - WFIFO is empty.

9 FULLW Flag of the fill degree of the WFIFO buffer:

• 0 – wfifo is not full;

• 1 – wfifo is full.

Field INTEREQ

Field INTEREQ reflects interrupts request status. The bits it occupies in
the intr register are shaded:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RReeggiisstteerrss

3-23Assembly Language Overview
Version 1.0

Description of the field bits follows:

BIT NAME DESCRIPTION

8 T0R Interrupt request generated by the timer t0.

7 SPR Interrupt request generated by the RISC-core when an
overflow occurs during the scalar arithmetic operation.

6 VPR Interrupt request generated by an incorrect vector
instruction.

5 INR External (user) interrupt request.

4 IC1R Interrupt request generated by the communication port 1
in the end of data receiving.

3 IC0R Interrupt request generated by the communication port 0
in the end of data receiving.

2 OC1R Interrupt request generated by the communication port 1
in the end of data sending.

1 OC0R Interrupt request generated by the communication port 0
in the end of data sending.

0 T1R Interrupt request generated by the timer t1.

Note When an interrupt request occurs, the corresponding bit of the intr is
automatically set.
The bit is automatically cleared when the interrupt service routine starts
executing.

3.2.4 Register lmicr
The lmicr is a 32-bit register that can be programmed to control local
memory interface by defining the

• page size used for the two memory banks at each port;

• address ranges over which memory banks are active;

• wait states;

• other operations that control the memory interface.

Register lmicr is accessible both for reading and for writing.

The lmicr must be set up before any application runs. Usually the
loader program, which is included to the load and exchange library, sets
it up.

Note The user can change the contents of lmicr register himself. However, it
is necessary to be careful because an incorrectly configured register will
not allow the processor to correctly access global memory. It can cause

RReeggiisstteerrss

3-24 Assembly Language Overview
Version 1.0

the program halt or incorrect execution.

Register lmicr has absolutely the same structure as the register gmicr.
Table 3-3 describes the fields of this register.

Since the local bus has its own range of addresses, its division into the
memory banks is determined as shown in Table 3-11.

Table 3-11. Division of Local Bus Address Space into Banks 0/1 According to BOUND

BOUND SIZE OF
BANK 0

(64 BITS)

ADDRESS SPACE
OF BANK 0

SIZE OF
BANK 1

(64 BITS)

ADDRESS SPACE
OF BANK 1

0000 215 = 32К 00000000 - 0000FFFF 32К 00010000 - 7FFFFFFF

0001 216 = 64К 00000000 - 0001FFFF 64К 00020000 - 7FFFFFFF

0010 217 = 128К 00000000 - 0003FFFF 128К 00040000 - 7FFFFFFF

0011 218 = 256К 00000000 - 0007FFFF 256К 00080000 - 7FFFFFFF

0100 219 = 512К 00000000 - 000FFFFF 512К 00100000 - 7FFFFFFF

0101 220 = 1М 00000000 - 001FFFFF 1М 00200000 - 7FFFFFFF

0110 221 = 2М 00000000 - 003FFFFF 2М 00400000 - 7FFFFFFF

0111 222 = 4М 00000000 - 007FFFFF 4М 00800000 - 7FFFFFFF

1000 223 = 8М 00000000 - 00FFFFFF 8М 01000000 - 7FFFFFFF

1001 224 = 16М 00000000 - 01FFFFFF 16М 02000000 - 7FFFFFFF

1010 225 = 32М 00000000 - 03FFFFFF 32М 04000000 - 7FFFFFFF

1011 226 = 64М 00000000 - 07FFFFFF 64М 08000000 - 7FFFFFFF

1100 227 = 128М 00000000 - 0FFFFFFF 128М 10000000 - 7FFFFFFF

1101 228 = 256М 00000000 - 1FFFFFFF 256М 20000000 - 7FFFFFFF

1110 229 = 512М 00000000 - 3FFFFFFF 512М 40000000 - 7FFFFFFF

1111 230 = 1G 00000000 - 7FFFFFFF 0 -

Refer to the gmicr description to get more information on the lmicr
(see 3.2.1 on page 3-6).

3.2.5 Register pc
The program counter (pc) is a 32-bit register containing the address of
the next instruction to be fetched.

The processor always fetches a 64-bit word of instructions. This word
contains either one long instruction or two short ones. A long instruction
is always located at an even address.

The buffer of pre-fetched instructions strongly influences the pc register
value. Different instruction length makes impossible the accurate

RReeggiisstteerrss

3-25Assembly Language Overview
Version 1.0

prediction of the pc value, whether it is equal to the current address plus
two or plus four.

Due to an ambiguity of the contents of the pc register at every certain
moment of time, the assembler does not support the instruction counter
addressing.

3.2.6 Register pswr
Field BC ...3-26
Field TIMER pin control ...3-26
Field CP1 control ...3-28
Field CP0 control ...3-29
Field T0C ...3-29
Field T1C ...3-30
Field FCL ...3-30
Field INTERRUPT MASKS ..3-31
Field FLAGS ..3-32

The pswr register (word of state) contains global information relating to
the state of the processor. Typically, operations set the condition flags of
the pswr according to whether the result is zero, negative, etc.

After the system RESET it is filled with zero.

Some fields of the register are changed automatically by the processor
some fields are programmable. To set or clear the desired fields of the
pswr the special processor instructions are intended. Table 3-12 specifies
the fields of the pswr.

Table 3-12. Processor State Word (pswr)

BIT FIELD BIT NAME
31
30

BC GBRE
LBRE

29
28
27
26

TIMER pin control TEN
TM2
TM1
TM0

25
24
23

CP1 control CP1I
ICH1
OCH1

22
21
20

CP0 control CP0I
ICH0
OCH0

19
18

T0C TM0
TE0

17
16

T1C TM1
TE1

15
14

FCL WFCL
AFCL

13
12
11
10
9
8

INTERRUPT MASKS T0M
SPM
VPM
INTM
IC1M
IC0M

RReeggiisstteerrss

3-26 Assembly Language Overview
Version 1.0

7
6
5
4

OC1M
OC0M
T1M
STM

3
2
1
0

FLAGS N
Z
V
C

The detailed description of each field of the pswr is given below.

Field BC

Field BC specifies access to shared buses. The possible configurations of
shared memory interface are listed in the document NeuroMatrix®
NM6403. User’s Guide. The field handles access to the shared bus from
the other processor. If the processor owns the shared memory or if it is
the common memory, the field allows or does not allow the processor to
carry control over the bus to the other processor. The bits occupied by
the BC field in the register pswr are shaded:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Description of the field bits follows:

BIT NAME DESCRIPTION

31 GBRE Global Bus Request Enable. This bit enables/disables
carry of control over the global bus by request from an
external device:

• 0 - enables carrying of control;

• 1 - disables carrying of control.

30 LBRE Local Bus Request Enable. This bit enables/disables
carry of control over the local bus by request from an
external device:

• 0 - carrying of control is enabled;

• 1 - carrying of control is disabled.

Field TIMER pin control

The TIMER pin control field defines the state and behavior of the
TIMER pin. The bits occupied by the field in the register pswr are
shaded:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Description of the field bits follows:

BIT NAME DESCRIPTION

29 TEN This bit enables/disables output mode of the TIMER
pin.

RReeggiisstteerrss

3-27Assembly Language Overview
Version 1.0

• 0 - output mode is disabled;

• 1 - output mode is enabled.

28 TM2 This field together with the fields TM1 and TM0
controls the output signal configuration on the TIMER
pin.

27 TM1 This field together with the fields TM2 and TM0
controls the output signal configuration on the TIMER
pin.

26 TM0 This field together with the fields TM2 and TM1
controls the output signal configuration on the TIMER
pin.

If the bit TEN = 0 none of combinations of bits TM2, TM1 and TM0 will
cause change of the TIMER pin state.

In case TEN = 1 the fields TM2, TM1 and TM0 are used to define the
shape of the output signal on the TIMER pin. The possible signal shapes
are listed in Table 3-13.

Apart from the high level signal and the low level signal, all other signals
depend on timers Т0/Т1 state.

Table 3-13. Output Signals on TIMER pin

TM2 TM1 TM0 STATE OF TIMER PIN

0 0 0
Low level output

1

t
0

0 0 1

High level output
1

t
0

0 1 0 1

The counter is zeroed t

Timer T0 period
0

Timer T0 period

0 1 1 1

The counter is zeroed. t

Timer T1 period
0

Timer T1 period

1 0 0 1

One cycle pulse (when the counter is zeroed) t

Timer T0 period
0

1 0 1 1

One cycle pulse (when the counter is zeroed) t

Timer T1 period
0

RReeggiisstteerrss

3-28 Assembly Language Overview
Version 1.0

1 1 0 1

One cycle pulse (when the counter is zeroed) t

Timer T0 pulse
0

1 1 1 1

One cycle pulse (when the counter is zeroed) t

Timer T1 period
0

In case the timer Т0 or Т1 works in the loop mode, the presented time
diagrams will have periodical character too.

If the timer is programmed for single count, then after the counter
achieves zero the timer will be held. Depending on the preset TM2, TM1
and TM0 either a single pulse with the following return to the basic output
level (as in the last four cases), or the output level change takes place.

Field CP1 control

Field CP1 control defines an operating mode of the 1st communication
port. The bits it occupies in the pswr register are shaded:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Description of the field bits follows:

BIT NAME DESCRIPTION

25 CP1I Bit of external initialization of the input channel of the
1st comm. port:

• 0 - direct initialization mode of the input channel.
This means that the address and size of the array to
be received are prescribed before starting data
receiving;

• 1 - external initialization of input channel. This
means that initialization of the DMA is executed
according to the first received word. The first 64-bit
word contains the address of the array to be received
(low word) and its size (high word).

24 ICH1 Bit of enable/disable of data input through the 1st
comm. port:

• 0 - data input is allowed;

• 1 - data input is not allowed.

23 OCH1 Bit of enable/disable of data output through the 1st
comm. port:

• 0 - data output is allowed;

• 1 - data output is not allowed.

RReeggiisstteerrss

3-29Assembly Language Overview
Version 1.0

Field CP0 control

Field CP0 control defines an operating mode of the 0th communication
port. The bits it occupies in the pswr register are shaded:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Description of the field bits values follows:

BIT NAME DESCRIPTION

22 CP0I Bit of external initialization of the input channel of the
0th comm. port:

• 0 - direct initialization mode of the input channel.
This means that the address and size of the array to
be received are prescribed before starting data
receiving;

• 1 - external initialization of input channel. This
means that initialization of the DMA is executed
according to the first received word. The first 64-bit
word contains the address of the array to be received
(low word) and its size (high word).

21 ICH0 Bit of enable/disable of data input through the 0th
comm. port:

• 0 - data input is allowed;

• 1 - data input is not allowed.

20 OCH0 Bit of enable/disable of data output through the 0th
comm. port:

• 0 - data output is allowed;

• 1 - data output is not allowed.

Note The fields СР0 and СР1 control can be modified only by the
instructions pswr set or pswr clear (see paragraph 5.1.8 on page 5-
17).

Field T0C

Field T0C controls the timer Т0. The bits it occupies in the pswr register
are shaded:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Description of the field bits follows:

BIT NAME DESCRIPTION

RReeggiisstteerrss

3-30 Assembly Language Overview
Version 1.0

19 ТМ0 Defines an operating mode of the Т0.

18 ТЕ0 Enables/disables work of the Т0.

Different combinations of bits in this field allow the user to select the
timer mode from the following list:

Table 3-14. Timer Т0(T1) Operation Modes

TM0 TE0 DESCRIPTION

0 0 All timer operations are held. The contents of the t0
register do not affect the timer.

0 1 When the counter t0 becomes zero, the timer stops and
the interrupt request is set. This is the single count
mode.

1 х The timer works in the loop mode. When the counter
becomes zero, the interrupt request is set, the counter
recovers the initial state and the new period starts. The
bit marked with ‘x’ has no effect.

For more details about timers Т0 and Т1 work see 3.2.7on page 3-32.

Field T1C

The field T1C controls the timer Т1. The bits it occupies in the pswr
register are shaded:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Description of the field bits follows:

BIT NAME DESCRIPTION

17 ТМ1 Defines an operating mode of the Т1.

16 ТЕ1 Enables/disables work of the Т1.

Combinations of the bits TM1 and TE1 determine the timer Т1 work in
accordance with Table 3-14.

For more details about timers Т0 and Т1 see 3.2.7 on page 3-32.

Field FCL

The field FCL allows the user to clear the current contents of the internal
buffers AFIFO and WFIFO. The bits it occupies in the pswr register are
shaded:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RReeggiisstteerrss

3-31Assembly Language Overview
Version 1.0

Description of the field bits follows:

BIT NAME DESCRIPTION

15 WFCL Bit of WFIFO clearing enable/disable:

• 0 – clearing is not allowed;

• 1 – clearing is allowed. In this case the processor
sends the signal of the buffer clearing every clock
cycle until the user clears the bit.

14 AFCL Bit of AFIFO clearing enable/disable:

• 0 – clearing is not allowed;

• 1 – clearing is allowed. Here the processor sends the
signal of the buffer clearing every clock cycle until
the user clears the bit.

Field INTERRUPT MASKS

Field INTERRUPT MASKS is used to enable/disable the processor
interrupts. When the related bit is set, the mask is active, and the
interrupt is disabled and vise versa. The bits the field occupies in the
pswr register are shaded:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Description of the field bits follows:

BIT NAME DESCRIPTION

13 Т0М The timer T0 interrupt mask. An interrupt is sent to the
processor when the timer counter t0 achieves zero.

12 SPM The scalar arithmetic operation overflow interrupt
mask.

11 VPM The incorrect vector instruction interrupt mask.

10 INTM The external (user) interrupt mask.

9 IC1M The finish of data input through the 1st communication
port. An interrupt is sent when the input channel
counter achieves zero.

8 IC0M The finish of data input through the 0th communication
port. An interrupt is sent when the input channel
counter achieves zero.

7 OC1M The finish of data output through the 1st communication
port. An interrupt is sent when the output channel
counter achieves zero.

6 OC0M The finish of data output through the 0th communication
port. An interrupt is sent when the output channel

RReeggiisstteerrss

3-32 Assembly Language Overview
Version 1.0

counter achieves zero.

5 T1M The timer T1 interrupt mask. An interrupt is sent when
the timer counter t1 achieves zero.

4 ST Single step/debug interrupt mask.

Field FLAGS

Field FLAGS is a set of condition flags that are set or cleared by the
arithmetic operations on the RISC-core. They provide information about
the properties of the result or output of arithmetic/logical/shift
operations. The bits the field occupies in the pswr register are shaded:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 031 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Description of the field bits follows:

BIT NAME DESCRIPTION

3 N Negative Condition Flag. 1 if a negative result of an
arithmetic/logical/shift operation on the scalar processor
is generated, 0 otherwise.

2 Z Zero Condition Flag. 1 if a zero result of an
arithmetic/logical/shift operation on the scalar processor
is generated, 0 otherwise.

1 V Overflow Condition Flag. 1 if an integer overflow
occurs in the result of an arithmetic/logical/shift
operation on the scalar processor, 0 otherwise.

0 C Carry Flag. 1 if a carry or borrow occurs in the result
of an arithmetic operation on the scalar processor,
otherwise 0. For shift operations, this flag is set to the
value of the last bit shifted out.

3.2.7 Timer Counters t0 and t1
The 32-bit timer counter registers increment with each cycle of the
related timer clock. When the timer counter becomes zero, the interrupt
is sent to the processor.

When the timer is in the loop mode the counter is filled with the initial
value whenever it achieves zero. When the timer is in the single count
mode the counter achieves zero and stops.

Both timer counters t0 and t1 are read/write accessible registers.

The register t0 is considered a system register and it is usually used for
regeneration of dynamic memory. In this case a user program cannot use
it. If the processor works only with static memory, the user program can
use both registers.

RReeggiisstteerrss

3-33Assembly Language Overview
Version 1.0

The registers t0 and t1 are controlled independently, each of them is
controlled by the appropriate field in the register pswr. Depending on the
contents of those fields, the timer can do the following:

• generate an interrupt when passing through zero;

• stop counting when achieving zero;

• having achieved zero, initialize itself with the period variable and start
counting a new loop.

The timer makes a full run through the entire count range (from 0 to
0хFFFFFFFF) for:

• 107,37 sec at 40 MHz;

• 85,9 sec at 50 MHz.

Here is an example of work with a timer register:
begin "text"

 t1 = 0; // the timer counter t1 is zeroed
 ...

 // calculations are made.
 ...

 gr7 = t1; // the time of calculations measured in the processor
 // clock cycles is recorded to gr7.
end "text";

Note After a value is stored into the register t0(t1) 6 more cycles pass before a
new counter value will become active.

3.3 Vector Register File
The vector register file provides control of the Vector Unit. The registers
are used to handle data stream coming through the Vector Unit during
calculations, to store temporary data, to load weights to the Active
Matrix and so forth.

Vector registers are divided into two groups. The first one contains the
Vector Unit control registers. They define the configuration of the Active
and the Shadow Matrixes, the Vector ALU and so forth.

The second group includes so-called “registers-containers” that are the
Vector Unit internal memory blocks based on the FIFO principle. All
registers-containers are up to thirty two 64-bit words long.

RReeggiisstteerrss

3-34 Assembly Language Overview
Version 1.0

Table 3-15. Vector Register File of NeuroMatrix NM6403

REGISTER DESCRIPTION NOTE

f1cr,f2cr Activation function control registers. 64 bits. Write
accessible.

nb1 This register divides the Shadow Matrix into
columns.

64 bits. Write
accessible.

nb2 This register divides the Active Matrix into
columns and the Vector ALU input into
elements.

64 bits. Not
accessible.

sb This register is a superposition of the sb1 and
sb2 registers.

64 bits. Write
accessible.

sb1 This register divides the Shadow Matrix into
rows.

32 bits. Not
accessible.

sb2 This register divides the Active Matrix into
rows.

32 bits. Not
accessible.

vr Bias register. 64 bits. Write
accessible.

afifo Register-container that is used to store the result
of every vector instruction.

32х64 bits.

data Pseudo register-container that is used to
manipulate data loading from external memory
and redirect them to the Active Matrix or the
Vector ALU. It is mapped to input data buses of
NM6403.

32х64 bits.

ram Register-container that is used to store and reuse
the same data block in calculations.

32х64 bits.

wfifo Register-container that is used to store weights
those are then loaded to the Shadow Matrix.

32х64 bits.

3.3.1 Registers f1cr and f2cr

How f1cr (f2cr) Splits Input Data ..3-35
Use of f1cr(f2cr) in Saturation Function (Arithmetic Activation)....................................3-36
Use of f1cr(f2cr) in Threshold Function (Logical Activation)...3-38
Load the f1cr (f2cr) Register ..3-38

The f1cr and f2cr are 64-bit write accessible registers. They are used
to control configuration of operands when applying piecewise-linear
transform to input data in the Activation Units (see 1.5.5 on page 1-19).

The data coming through the input channels X and Y of the Vector Unit
can be transformed by piecewise-linear functions called activation
functions. It happens if the reserved word ‘activate’ is used in a
vector instruction.

RReeggiisstteerrss

3-35Assembly Language Overview
Version 1.0

There are two types of activation functions:

• threshold function (see Figure 3-1а);

• saturation function (see Figure 3-1b).
Figure 3-1. Types of Embedded Activation Functions

Thresholds

Output

Input data
0

-H-1

H

0

-1

Output

a) Threshold function b) Saturation function

Input data

The type of the activation function to be used is completely defined by
type of operation in the right part of a vector instruction. The threshold
function is used only with logical operations, while the saturation
function only with arithmetic functions. The entire sets of vector logical
and arithmetic operations are given in paragraph 5.1.12 on page 5-24 and
5.1.11 on page 5-23 respectively.

The f1cr and f2cr play the following role in the activation transform:

configure the split of 64-bit words of input data into elements;

define the threshold H of the saturation function.

The f1cr register specifies configuration of the input channel X when
the data are coming through the Activation Unit, and the f2cr specifies
configuration of the input channel Y.

The f1cr and f2cr registers split 64-bit words of input data into
elements. An activation function is executed over every element, i.e. all
elements composing a long word are transformed simultaneously and
independently.

The f1cr and f2cr registers specify configuration of data coming
through the Activation Units, while the registers sb2 and nb2 configure
the Active Matrix and the Vector ALU. The configurations may differ,
but in most cases they are the same.

How f1cr (f2cr) Splits Input Data

The f1cr register will be used in the following description, but everything
said below is also correct for f2cr unless otherwise arranged.

The boundary between elements is specified in the f1cr register when in
the pair of the bits the right bit is ‘1’ while the left bit is ‘0’ (see Figure
3-2). Any other combinations of the neighbor bits do not affect the
boundaries.

RReeggiisstteerrss

3-36 Assembly Language Overview
Version 1.0

Figure 3-2. Division of a 64-bit Word into Elements by f1cr (f2cr)

f1cr 1111000011110 ... 10000 11110000 11110000
63 ↓ ↓ ↓ 0

Data XN X1 X0

The smallest size of an element is two bits (the low bit is ‘0’ and the high
bit is ‘1’).

The sequence of zeros and ones in f1cr is arbitrary. That is why a long
word of data can be split into an arbitrary number of elements (within the
range from 1 to 32) of an arbitrary length with the total number of bits
equal to 64.

Use of f1cr(f2cr) in Saturation Function (Arithmetic Activation)

The data words processing in the Vector Unit are 64 bits long. The
register f1cr has the same length. That is why every bit of f1cr
corresponds to the bit of data.

When arithmetic activation is applied to input data by means of the
saturation function (see Figure 3-1b), the bit values of f1cr
corresponding to inner bits of data elements specify the threshold.

A packed word of input data is split into elements. The most significant
bit (MSB) of every element always corresponds to the bit of f1cr equal
to ‘1’. (see Figure 3-2). As illustrated in Table 3-16 the number of bits
‘1’ located to the right of the MSB specify the threshold.

Table 3-16. List of Thresholds for 8-bit Data

BITS OF F1CR THRESHOLD

100000002 127

110000002 63

111000002 31

111100002 15

111110002 7

111111002 3

111111102 1

The possible threshold values are a power of 2 minus one (H = 2n - 1).

The next examples explain mechanism of the saturation function
application to elements of input data. The 8-bit element is considered.
The threshold value is equal to 31.

The first example shows how the saturation function affects the element
of data, which is non-negative, but less than or equal to the threshold.
Three most significant bits of all values from the described range are ‘0’:

f1cr: ...11100000... ← the upper threshold is ‘31’(0x1F)

RReeggiisstteerrss

3-37Assembly Language Overview
Version 1.0

data field: ...00010110... ← value of the element is ‘22’(0x16)

after activation: ...00010110... ← value of the element is ‘22’(0x16)

The Activation Unit checks three most significant bits of the element.
They all are ‘0’. In this case, the value of the element is not changed.

The second example shows how the saturation function affects the
element of data, which is negative, but greater than or equal to the
negative threshold. Three most significant bits of all values from the
described range are ‘1’:

f1cr: ...11100000...← the negative threshold is ‘-32’(0xE0)

data field: ...11110110... ← the element value is ‘-10’(0xF6)

after activation:...11110110... ← the element value is ‘-10’(0xF6)

The Activation Unit checks three most significant bits of the element. All
they are ‘1’. In this case the value of the element is not changed.

The third example shows how the saturation function transforms the
element of data, which is positive and exceeds the threshold. Three most
significant bits of all values from the described range are not the same.

f1cr: ...11100000... ← the positive threshold is ‘31’(0x1F)

data field: ...01010110... ← value of the element is ‘86’(0x56)

after activation: ...00011111... ← value of the element is ‘31’(0x1F)

The Activation Unit checks three most significant bits of the element.
One or two of them are ‘1’. The MSB is ‘0’, this means the value is
positive, but it exceeds the threshold. In this case the contents of the
element is saturated, i.e. it is substituted by the threshold value.

The last example shows how the saturation function transforms the
element of data, which is negative and exceeds the negative threshold.
Three most significant bits of all values from the described range are not
the same.

f1cr: ...11100000... ← the low threshold is ‘-32’(0xE0)

data field: ...11010110... ← value of the element is ‘-42’(0xD6)

after activation: ...11100000... ← value of the element is ‘-32’(0xE0)

The Activation Unit checks three most significant bits of the element.
One or two of them are ‘0’. The MSB is ‘1’, this means the value is
negative, but it exceeds the negative threshold. In this case the contents
of the element is saturated, i.e. it is substituted by the negative threshold
value.

Thus, if the bits of an element corresponding to bits ‘1’ of the f1cr
register are:

the same - the content of the element is not changed by the arithmetic
activation.

RReeggiisstteerrss

3-38 Assembly Language Overview
Version 1.0

not the same, and MSB is ‘0’ - the contents of the element is substituted
by the positive threshold.

not the same, and MSB is ‘1’ - the contents of the element is substituted
by the negative threshold.

Use of f1cr(f2cr) in Threshold Function (Logical Activation)

Logical activation is applied to input data by means of the threshold
function (see Figure 3-1a). A packed word of input data is split into
elements. As can be seen in Figure 3-2, the most significant bit (MSB) of
every element always corresponds to the bit of f1cr equal to ‘1’.

The MSB of every element specifies the behavior of the threshold
function. If the MSB of an element is ‘0’, the element is non-negative.
The threshold function substitutes the element value for zero. It looks
like spread of ‘0’ along the element up to the list significant bit.

If the MSB of an element is ‘1’, the element is negative. The threshold
function substitutes the element value for -1. It looks like spread of ‘1’
along the element up to the list significant bit.

The next examples explain mechanism of the threshold function
application to elements of input data. The 8-bit element is considered.

The first example shows how the threshold function affects the element
of data, which is non-negative. The most significant bit of all non-
negative elements is ‘0’:
f1cr: ...0|10000000|1...

data field: 00010110... ← input value is 22(0x16)

after activation: 00000000... ← result value is 0

The data element value is equal to 22 (positive). The result of processing
by the logical activation function is zero.

The second example shows how the threshold function affects the
element of data, which is negative. The most significant bit of all non-
negative elements is ‘1’:
f1cr: ...0|10000000|1...

data field: 10010110... ← input value is -106(0x96)

after activation: 11111111... ← result value is -1(0хFF)

The data element value is equal to -106 (negative). The result of
processing by the logical activation function is equal to -1.

Thus, the logical activation function (threshold function) substitutes non-
negative values of data elements for 0, and negative values for -1.

Load the f1cr (f2cr) Register

The f1cr is a 64-bit register. The instruction set of NeuroMatrix®
NM6403 does not allow loading a 64-bit constant to registers directly.
However there are several indirect methods of initializing the f1cr
register.

RReeggiisstteerrss

3-39Assembly Language Overview
Version 1.0

Method 1. Piecemeal Load.

The NM6403 processor allows separate access to the high and low parts
of the f1cr register. The high and low parts of the f1cr have special
notation as follows:

• f1crh - the high 32-bit part of the f1cr register;

• f1crl - the low 32-bit part of the f1cr register.

Here is an example of the f1cr register piecemeal load:
f1crl = 80808080h; // load the low part of f1cr.

f1crh = 40404040h; // load the high part f1cr.

As a result of the command the 64-bit constant 40404040808080hl
will be loaded to the f1cr register.

Method 2. Load the same constant to the both parts of the register.

If the same constant is to be loaded to the low and the high part of the
register, the following instruction can be used:
f1cr = 80808080h; // load the same constant to the high
 // and to the low part of f1cr.

The processor automatically recognizes access to 64-bit register and
copies the same constant to the both parts of the register. As a result of
the command the 64-bit constant 80808080808080hl will be loaded to
the f1cr register.

Method 3. Load the contents of the memory location.

The register f1cr can be initialized with a 64-bit constant located in
memory in the following manner:
data ".data"
 MyF1CR: long = 0123456789ABCDEFhl;
 ...
end ".data";

...

begin ".text"
 ...
 f1cr = [MyF1CR]; // load 64-bit constant from memory to f1cr.
 ...
end ".text";

The processor automatically recognizes access to 64-bit register and
loads a 64-bit constant from memory. As a result of the command the 64-
bit constant 0123456789ABCDEFhl will be loaded to the f1cr register.

Table 3-17 presents the most frequently used constants for the f1cr
register initialization. It is supposed that a 32-bit constant is loaded to
f1cr as described in the method two, and a 64-bit constant is read from
memory.

RReeggiisstteerrss

3-40 Assembly Language Overview
Version 1.0

Table 3-17. Constants Frequently Used for the f1cr(f2cr) Register Initialization

ELEMENT SIZE NUMBER OF
ELEMENTS IN 64-BIT

WORD

CONSTANT TO LOAD IN
F1CR (F2CR)

64 bits 1 f1crh = 80000000h

32 bits 2 80000000h

21 bits 3 4000020000100000hl

16 bits 4 80008000h

10 bits 6 0802008020080200hl

8 bits 8 80808080h

4 bits 16 88888888h

2 bits 32 AAAAAAAAh

3.3.2 Register nb1(nb2)

Use of nb1(nb2) ...3-41
Load the nb1Register...3-42

The nb1 is 64-bit write accessible register. It belongs to the Shadow
Matrix. It controls division of the Shadow Matrix into columns.

The nb2 is 64-bit not accessible register. It belongs to the Active Matrix.
It controls:

• division of the Active Matrix into columns;

• division of the Vector ALU input data into elements.

The Vector Unit incorporates two operation matrixes: the Active and the
Shadow. The Active Matrix participates in calculations while on the
background the Shadow Matrix is used to prepare the next portion of
weights that will be used on the next step of calculations. This
architectural features allow simultaneous calculations and preparing of
new weights. When the new weights are prepared, it takes one clock
cycle to copy the contents of the Shadow Matrix to the Active Matrix.
The vector instruction wtw is used for this purpose.

As shown in Figure 3-3, each Matrix is associated with a pair of registers
(please, do not mix it up with a register pair):

nb[1,2] - determines the Matrix division into columns;

sb[1,2] - determines the Matrix division into rows.

RReeggiisstteerrss

3-41Assembly Language Overview
Version 1.0

Figure 3-3. The Shadow and the Active Matrixes of the Vector Unit

Register sb1 (32 bits)

Register nb1 (64 bits)

Shadow Matrix

Shadow Matrix and its registers

wtw

Register sb2 (32 bits)

Register nb2 (64 bits)

Active Matrix

Active Matrix and its registers

The registers associated with the Shadow Matrix are nb1 and sb1, and
registers of the Active Matrix are nb2 and sb2.

Description of registers sb1 and sb2 is given later in paragraph 3.3.3 on
page 3-44. Hereafter the registers nb1 and nb2 are described.

The nb2 register is not accessible directly from assembler. For indirect
access to nb2 the nb1 register is intended. In order to modify nb2, it is
necessary to make the following steps:

• Load a 64-bit constant to the nb1 register;

• Execute the wtw instruction to copy the contents of the Shadow
Matrix and the associated registers to the Active Matrix and its
registers. It will change the contents of nb2.

Use of nb1(nb2)

The nb1(nb2) register controls division of the Shadow (Active) Matrix
of the Vector Unit into columns. The nb2 register also specifies split of
packed data words when the data are processed on the Vector ALU.

Then using nb1(nb2) for boundaries specification the bits that are set to
‘1’ are treated as the most significant bits (MSB) of elements (see Figure
3-4).

RReeggiisstteerrss

3-42 Assembly Language Overview
Version 1.0

Figure 3-4. Split of the Shadow(Active) Matrix into Columns by the nb1(nb2) Register

Register nb1(nb2)
10000000 00000000 10000000 00000000 10000000 00000000 10000000 00000000
63 0

Shadow (Active)
 Matrix

The minimum column width is one bit. The nb1(nb2) register allows the
user to split the Matrix into up to 64 columns. Width of columns is
ranged from one to sixty-four bits.

As the output of the Active Matrix is the input of the Vector ALU, the
nb2 register specifies configuration of the input X of the Vector ALU,
too. According to the architecture of the Vector ALU the inputs X and Y
must have the same configuration. So, the nb2 register specifies
configuration of both input channels entering the Vector ALU.

It is possible to divide the Matrix into columns (the Vector ALU inputs
into elements) of different width. The example below shows the division
of 64-bit words into the elements in the following manner: 32-bit|16-
bit|16-bit:
data "NB"

 NB1: long = 8000000080008000hl;

end "NB";

begin "text"

 nb1 = [NB1]; // load a 64-bit constant from memory to nb1.
 . . .

 wtw; // copy the contents of nb1 to nb2.
 . . .

end "text";

If it isn’t necessary to split the Matrix into columns zero may be written
to register nb1. The processor sets the boundary of the elements at the
63rd bit.

Load the nb1Register

The nb1 is a 64-bit register. The instruction set of NeuroMatrix®
NM6403 does not allow loading a 64-bit constant to registers directly.

RReeggiisstteerrss

3-43Assembly Language Overview
Version 1.0

However there are several indirect methods of initializing the nb1
register.

Method 1. Partial Load.

The NM6403 processor allows separate access to the high and low parts
of the nb1 register. The high and low parts of the nb1 have special
notation as follows:

• nb1h - the high 32-bit part of the nb1 register;

• nb1l - the low 32-bit part of the nb1 register.

Here is an example of the nb1 register partial load:
nb1l = 80808080h; // load the low part of nb1.

nb1h = 40404040h; // load the high part nb1.

As a result of the command the 64-bit constant 40404040808080hl
will be loaded to the nb1 register.

Method 2. Load the same constant to the both parts of the register.

If the same constant is to be loaded to the low and the high part of the
register, the following instruction can be used:
nb1 = 80808080h; // load the same constant to the high
 // and to the low part of nb1.

The processor automatically recognizes access to a 64-bit register and
copies the same constant to the both parts of the register. As a result of
the command the 64-bit constant 80808080808080hl will be loaded to
the nb1 register.

Method 3. Load the contents of the memory location.

The register nb1 can be initialized with a 64-bit constant located in
memory in the following manner:
data ".data"
 MyNB1: long = 0123456789ABCDEFhl;
 ...
end ".data";

...

begin ".text"
 ...
 f1cr = [MyNB1]; // load 64-bit constant from memory to nb1.
 ...
end ".text";

The processor automatically recognizes access to 64-bit register and
loads a 64-bit constant from memory. As a result of the command the 64-
bit constant 0123456789ABCDEFhl will be loaded to the nb1 register.

Table 3-18 presents the most frequently used constants for the nb1
register initialization. It is supposed that a 32-bit constant is loaded to
nb1 as described in the method two, and a 64-bit constant is read from
memory.

RReeggiisstteerrss

3-44 Assembly Language Overview
Version 1.0

Table 3-18. The Constants Frequently Used for the nb1 Register Initialization

ELEMENT SIZE NUMBER OF
ELEMENTS

CONSTANT TO LOAD IN
NB1

64 bits 1 0

32 bits 2 80000000h

21 bits 3 4000020000100000hl

16 bits 4 80008000h

10 bits 6 0802008020080200hl

8 bits 8 80808080h

4 bits 16 88888888h

2 bits 32 AAAAAAAAh

1 bits 64 FFFFFFFFh

3.3.3 Register sb (sb1 and sb2)

Structure of sb ...3-44
Use of sb (sb1, sb2)...3-45
Load the sb Register..3-46

The sb is a 64-bit write accessible register. It is used to split the Shadow
and the Active Matrix of the Vector Unit into rows.

The sb register is not accessible for reading. The assembler treats an
attempt to read data from sb as syntax error.

Structure of sb

The sb register is a superposition of the sb1 and sb2 registers. The 32-
bit sb1 and sb2 registers control split of the Shadow/Active Matrix into
rows. The sb1 register is associated with the Shadow Matrix, while sb2
is an attribute of the Active Matrix. The sb1 and sb2 registers are not
directly accessible from a user program. Direct access to sb1 and sb2 is
impossible due to the NM6403 architectural restrictions. The sb register
is used to modify the contents of the sb1 and sb2 registers.

The sb register looks like a “tooth-comb”. Each bit of sb belongs either
to sb1, or to sb2. All bits of one register are mixed with the bits of the
other register (see Figure 3-5).

Figure 3-5. Register sb and its Component Registers sb1 and sb2
63626160595857565554535251504948 47464544434241403938373635343332 151413121110 9 8 7 6 5 4 3 2 1 031302928272625242322212019181716

As shown in the figure above, odd bits of sb belong to sb1 (they are not
shaded), while the even bits belong to sb2 (they are shaded).

RReeggiisstteerrss

3-45Assembly Language Overview
Version 1.0

Only bits of the sb1 register (odd bits) are changed when the sb register
is initialized with a constant. Assembler allows the user to write new data
to even bits of sb, but it does not affect the sb2 state.

Use of sb (sb1, sb2)

The sb register can be treated as a logical representation of sb1 and sb2.
Later in this Section the cause of this representation will be explained.
The sb is directly accessible for writing. It allows the user to initialize
the sb1 register and then sb2.

The sb1 register controls split of the Shadow Matrix into rows. The sb2
register determines the same configuration for the Active Matrix and
describes input X configuration.

To modify sb1 the odd bits of the sb register must be initialized. Writing
to the even bits of sb is ignored. The content of sb1 is copied to sb2 by
the wtw instruction.

The 32-bit sb2 register controls the 64-bit input X the Active Matrix.
This means that its every bit of sb2 handles two bits of data coming
through the input X of the Active Matrix. It is the main point of the
difference between nb2 and sb2.

Then using sb1(sb2) for boundaries specification the bits that are set to
‘1’ are treated the least significant bits (LSB) of elements (see Figure
3-6). This is another point of difference between nb1(nb2) and
sb1(sb2).

Figure 3-6 shows the Active Matrix division into rows by means of the
sb(sb2) register. Bits marked with "-" belong to sb1 and do not affect
the Active Matrix split.

RReeggiisstteerrss

3-46 Assembly Language Overview
Version 1.0

Figure 3-6. Active Matrix Division into Rows Using sb(sb2) Register
sb Active Matrix
-
0
-
0
-
0
-
1

63

-
0

...

-
0
-
1
-
0
-
0
-
0
-
1
-
0
-
0
-
0
-
1 0

The figure above explains where the logical model of the sb register
came from. This model is like a “comb”. The “comb teeth” are the bits of
sb1 and sb2. This model allows to “stretch” 32-bit registers for sixty-
four bits.

The minimum element size is two bits. In this case sb2=0FFFFFFFFh.
The maximum element size is sixty-two bits, here sb2=1.

In case sb1(sb2)=0 the processor automatically sets the LSB of
sb1(sb2) to ‘1’.

Load the sb Register

The sb is a 64-bit register. The instruction set of NeuroMatrix®
NM6403 does not allow loading a 64-bit constant to registers directly.
However there are several indirect methods of initializing the sb register.

Method 1. Partial Load.

The NM6403 processor allows separate access to the high and low parts
of the sb register. The high and low parts of the sb have special notation
as follows:

• sbh - the high 32-bit part of the sb register;

• sbl - the low 32-bit part of the sb register.

Here is an example of the nb1 register partial load:
sbl = 80808080h; // load the low part of sb.

RReeggiisstteerrss

3-47Assembly Language Overview
Version 1.0

sbh = 40404040h; // load the high part sb.

As a result of the command the 64-bit constant 40404040808080hl
will be loaded to the sb register.

Method 2. Load the same constant to the both parts of the register.

If the same constant is to be loaded to the low and the high part of the
register, the following instruction can be used:
sb = 80808080h; // load the same constant to the high
 // and to the low part of sb.

The processor automatically recognizes access to a 64-bit register and
copies the same constant to the both parts of the register. As a result of
the command the 64-bit constant 80808080808080hl will be loaded to
the sb register.

Method 3. Load the contents of the memory location.

The register sb can be initialized with a 64-bit constant located in
memory in the following manner:
data ".data"
 MySB: long = 0123456789ABCDEFhl;
 ...
end ".data";

...

begin ".text"
 ...
 f1cr = [MySB]; // load 64-bit constant from memory to sb.
 ...
end ".text";

The processor automatically recognizes access to a 64-bit register and
loads a 64-bit constant from memory. As a result of the command the 64-
bit constant 0123456789ABCDEFhl will be loaded to the sb register.

Table 3-19 presents the most frequently used constants for the sb register
initialization. It is supposed that a 32-bit constant is loaded to sb as
described in the method two, and a 64-bit constant is read from memory.

Table 3-19. The Most Frequently Used Split Constants for sb Initialization

ELEMENT
SIZE

NUMBER OF
ELEMENTS

CONSTANT TO LOAD IN SB

64 bits 1 0

32 bits 2 2

20 bits 3 2000020000200002hl

16 bits 4 00020002h

10 bits 6 0208020080200802hl

8 bits 8 02020202h

4 bits 16 22222222h

RReeggiisstteerrss

3-48 Assembly Language Overview
Version 1.0

2 bits 32 0AAAAAAAAh

In order not to mix up, what bits of the sb register must be filled and
what should not, it is possible to copy the same value to odd and even
bits. It will not cause any problem because the even bits corresponding to
sb2 will be ignored. Thus, for example, initialization of sb with the
constant 02020202h is equivalent to sb = 03030303h.

3.3.4 Register vr

Use of the vr Register ..3-48
Load the vr Register...3-48

The 64-bit write accessible vr register is used only in operations of
weighted accumulation acting as the operand Y (see 1.5.2 on page 1-12).
The contents of vr do not come through the Active Matrix, but goes
directly to the Vector ALU (see Figure 1-4). The main function of vr is
to add the same bias to all elements of a data vector.

Use of the vr Register

When the processor executes the vsum operation the contents of the vr
register is read each cycle and added to the result of weighted
accumulation on the Active Matrix.

Here is an example of the vr register use in the operation of weighted
accumulation:
begin "text"

 ...

 rep 20 data = [ar0++] with vsum , data, vr;

 ...

end "text";

In the result of this instruction execution twenty 64-bit words will be
read from the memory location address ar0, each of those words will be
multiplied by the weights contained in the Active Matrix and the contents
of vr will be added to the result.

Load the vr Register

The vr is a 64-bit register. The instruction set of NeuroMatrix®
NM6403 does not allow loading a 64-bit constant to registers directly.
However, there are several indirect methods of initializing the vr
register.

Method 1. Partial Load.

The NM6403 processor allows separate access to the high and low parts
of the vr register. The high and low parts of the vr have special notation
as follows:

• vrh - the high 32-bit part of the vr register;

RReeggiisstteerrss

3-49Assembly Language Overview
Version 1.0

• vrl - the low 32-bit part of the vr register.

Here is an example of the nb1 register partial load:
vrl = 80808080h; // load the low part of vr.

vrh = 40404040h; // load the high part vr.

As a result of the command the 64-bit constant 40404040808080hl
will be loaded to the vr register.

Method 2. Load the same constant to the both parts of the register.

If the same constant is to be loaded to the low and the high part of the
register, the following instruction can be used:
vr = 80808080h; // load the same constant to the high
 // and to the low part of vr.

The processor automatically recognizes access to a 64-bit register and
copies the same constant to the both parts of the register. As a result of
the command the 64-bit constant 80808080808080hl will be loaded to
the vr register.

Method 3. Load the contents of the memory location.

The vr register can be initialized with a 64-bit constant located in
memory in the following manner:
data ".data"
 MyVR: long = 0123456789ABCDEFhl;
 ...
end ".data";

...

begin ".text"
 ...
 vr = [MyVR]; // load 64-bit constant from memory to vr.
 ...
end ".text";

The processor automatically recognizes access to a 64-bit register and
loads a 64-bit constant from memory. As a result of the command the 64-
bit constant 0123456789ABCDEFhl will be loaded to the vr register.

3.3.5 Register-Container afifo
Clear the Contents of afifo ...3-51
Load Data to afifo...3-51
Store Data from afifo into Memory and into ram ..3-52
Use of afifo as the Input Buffer in Vector Operations ...3-52
Simultaneous Store into Memory and Use of afifo as Input Operand...........................3-54
Use of afifo in Bitwise Mask Operations...3-54
Cause of Errors When Working With afifo..3-54

The afifo vector register is a dual port FIFO buffer that is able to
contain up to thirty two 64-bit words.

RReeggiisstteerrss

3-50 Assembly Language Overview
Version 1.0

It mainly serves as an accumulator to store the result of the last vector
instruction.

Figure 3-7. Interaction of afifo with Other Devices of the NM6403

Vector Unit

ram

External
Memory

afifo

Operation
Unit

X Y

The register afifo is accessible both for reading and writing. But it can
be used only in vector instructions of the processor. Data from memory
cannot be directly stored into afifo avoiding the Operation Unit. This
means that afifo has only one input port, and this input port is
connected to the output port of the Operation Unit (see Figure 3-7). Later
a method of data load from memory to afifo will be shown.

The afifo buffer participates directly or indirectly in every vector
instruction except for instructions of weights loading to the Active
Matrix. The buffer can be used in both parts of a vector instruction. It
appears in the left part to store the calculation results into memory. If
afifo appears in the right part of an instruction it participates in
calculations as the operand X and/or Y.

Despite its name “accumulation FIFO” afifo cannot collect results of a
few vector instructions. The term “accumulation ” means the results of
the previous operation can be used as input data for the current operation.

The contents of afifo are changed by every vector instruction (with the
exception of weights loading). If afifo contains data, i.e. it is not
empty, the next vector instruction must store data into memory or reuse
them as the input data for the next step of calculation. An attempt to
execute the instruction that makes calculations but does not store or reuse
the contents of afifo will cause the exception.

To avoid incorrect use of afifo it is necessary to follow three rules:

• do not read data from the empty afifo (empty afifo cannot be used
as an input operand of vector instruction);

• do not store data into non-empty afifo if the current instruction does
not store the previous contents of afifo into memory, or does not
reuse it as an input operand;

• all internal FIFOs used by a vector instruction must contain the same
number of data.

RReeggiisstteerrss

3-51Assembly Language Overview
Version 1.0

Clear the Contents of afifo

The intr register contains a field that reflects fullness of afifo. The
field VPF contains the bit EMPTA (bit 12: "afifo is empty"/"afifo is
not empty") and the bit FULLA (bit 11: "afifo is full"/"afifo is not
full") (see 3.2.3 on page 3-19). The bits reflect the dynamic state of
afifo (the way its state changes during a vector instruction execution).

Field AFIFO_VAL of the intr register contains information about the
number of words in afifo after execution of an instruction or a group of
instructions is completed. This information changes more slowly than the
fields EMPTA and FULLA (it describes the result, but not the process).

The contents of afifo can be cleared by setting to ‘1’ the bit AFCL
(bit 14) of the field FCL in the register pswr (see 3.2.6 on page 3-25).
After the bit AFCL is set, it must be cleared, otherwise the Vector Unit
will clear afifo every clock cycle until the bit AFCL is set to ‘0’. The
following example shows a fragment of the source code that clears the
contents of afifo:
begin “.text”

 ...

 pswr set 4000h; // the bit AFCL is set to ‘1’

 pswr clear 4000h; // the bit AFCL is cleared, afifo is empty
 ...

end “.text”;

Load Data to afifo

The afifo register is a FIFO queue that is intended for containing up to
thirty-two 64-bit words. The counter of a vector instruction defines the
fullness of afifo, for example:
rep 24 data = [ar0++] with vsum , data, ram;

The instruction above makes calculations and stores twenty-four 64-bit
words of the result in afifo.

Though information comes to afifo only after it passed the Operation
Unit, it is possible to load data from memory without changes. The
following example shows the way of loading ten 64-bit words of data
from memory to afifo:
rep 10 data = [ar0++] with data; // data copies directly to afifo

The Vector Unit executes a bitwise logical OR with a zero vector that
does not cause any change of data. Now afifo contains ten long words
loaded directly from memory.

As mentioned above, the partial loading of data to afifo is not
permitted. This means it is impossible to load, for instance, five words
with the first instruction and ten more with the second one. The afifo
buffer can be loaded only in case it is empty or it is used as the input
buffer in the right part of the current vector instruction.

RReeggiisstteerrss

3-52 Assembly Language Overview
Version 1.0

Store Data from afifo into Memory and into ram

The contents of afifo can be stored into memory. For example:
rep 1 [ar0++] = afifo;

The instruction above stores one long word from afifo into memory. If
the right part of a vector instruction is omitted the afifo buffer becomes
empty.

The afifo buffer cannot be partially emptied. This means it is
impossible to store into memory ten of sixteen words contained in
afifo.

The data contained in afifo can be copied to ram. For example:
rep 8 [ar0++], ram = afifo;

The instruction above stores the results of calculation into memory and
copies the same data to ram. Old contents of ram will be replaced with
the new one. Please, note that it is impossible to copy afifo only to ram
without writing to memory.

Note The contents of afifo cannot be stored into a register or a register pair,
but only into memory.

Use of afifo as the Input Buffer in Vector Operations

The contents of the dual port afifo buffer can be used by the next
vector instruction for further calculations. In this case afifo is treated as
the operand X or/and Y (see Figure 3-7).

The current content of afifo is sent to the Operation Unit. A vector
instruction is executed for up to thirty two clock cycles depending on the
number of data words it processes. To process one word of data it takes
one cycle. As the first word of afifo comes out to the Operation Unit
(OU), the first word of the new result comes in from the OU. After
execution is complete, afifo is filled with the new results of
calculation. For instance, take a look on the sequence of data changing in
afifo during the vector instruction execution:

RReeggiisstteerrss

3-53Assembly Language Overview
Version 1.0

Figure 3-8. Contents of afifo on Different Stages of Vector Instruction Execurion

Current
contents of

afifo

After one clock
cycle of

execution

After three clock
cycles of
execution

After execution
is completed

in (from OU)
↓

in (from OU)
↓

7th word new 0th word new 2nd word new 7th word

… 7th word new 1st word …

… … new 0th word …

… … 7th word …

…
→

…
→

…
→

…

2nd word … … new 2nd word

1st word 2nd word 4th word new 1st word

0th word 1st word 3rd word new 0th word

 ↓
out (to OU)

 ↓
out (to OU)

The following examples show how the afifo buffer is used as the
operand X of the OU, the operand Y or both X and Y.

The contents of afifo can be sent to the input Х of the Operation Unit,
for example:

Х operand Y operand
↓ ↓

rep 32 data = [ar0++] with afifo and data;

This instruction performs a logical bitwise AND of the contents of the
memory location and the data stored in afifo at the moment. The
operation is executed on the Vector ALU; the first of the two operands in
the right part of the instruction goes to the input X, and the second one –
to the input Y.

The contents of afifo can be sent to the input Y as well:
Х Y
↓ ↓

rep 32 data = [ar0++] with vsum , data, afifo;

This instruction performs a weighted accumulation of the contents of the
memory location and adds the contents of afifo to the result of the
matrix operation.

The contents of afifo can be sent both to the input X and Y:
Х Y
↓ ↓

rep 32 with afifo + afifo;

This instruction duplicates the contents of afifo.

RReeggiisstteerrss

3-54 Assembly Language Overview
Version 1.0

The results of all three operations above are accumulated to afifo.

Simultaneous Store into Memory and Use of afifo as Input Operand

The afifo register allows the user to perform simultaneous data store
into memory and use them as the input data for the next vector
instruction, for example:
rep 32 [ar0++] = afifo with afifo - ram;

The instruction above performs store of the contents of afifo into
memory. The same data participate in the subtraction operation in the
right part of the instruction. After execution is completed the old contents
of afifo are stored into memory and the new contents are calculated as
the difference between the old contents of afifo and ram.

It is also possible to copy the contents of afifo to ram. But this
command can be made only together with store of data into memory. For
instance:
rep 20 [ar0++],ram = afifo with not afifo;

In this instruction the contents of afifo is stored into memory, copied to
ram and at the same time is used for the operation of negation in the right
part of the instruction. The negation is performed over the old contents of
afifo.

Use of afifo in Bitwise Mask Operations

The bitwise mask application is executed on the Operation Unit. For
mask operations the third input called “mask input” is used in addition to
X and Y. More detailed information about bitwise mask application can
be found in paragraph 1.5.4 on page 1-17. The contents of afifo can be
used as a mask, for example:

Mask Х Y
↓ ↓ ↓

rep 32 data = [ar0++] with mask afifo, ram, data;

This instruction performs bitwise mask application on the Vector ALU.

Another example demonstrates use of afifo in mask application
combined with weighted accumulation:

Mask Х Y
↓ ↓ ↓

Rep 32 data = [ar0++] with vsum afifo, ram, data;

Cause of Errors When Working With afifo

The following reasons can cause errors when working with afifo:

• an attempt to read data from empty afifo;

• an attempt to read more data than afifo contains;

• an attempt to read less data than afifo contains;

• an attempt to write results to non-empty afifo.

RReeggiisstteerrss

3-55Assembly Language Overview
Version 1.0

In case an error occurs due to the reasons indicated above, the instruction
containing an error is not executed. The processor replaces it with an
empty instruction vnul and generates the incorrect vector instruction
interrupt.

3.3.6 Logical Register-Container data

Use of data Register to Handle Data on Fly...3-55
Use of data Register in Bitwise Mask Operations ..3-56
Cause of Errors When Working With data Register ...3-56

The vector register data is a logical register used to manage data flow
passing along an input data bus from the external memory to the Vector
Unit during execution of a vector instruction.

Every clock cycle a 64-bit word of data comes from memory to an input
of the Vector Unit. This data word is treated as the current content of the
data register. The data register is introduced to control the data flow
coming from memory. It allows the user to redirect this flow to the
desired input of the Vector Unit.

So, the data register can be considered a pseudo-buffer of an input data
bus. A pseudo-buffer is organized according to the FIFO principle and
can contain up to thirty-two 64-bit words. The number of words in data
depends on the number of words processing by the current vector
instruction.

Use of data Register to Handle Data on Fly

The data register is used to handle data flow coming from memory, for
example:

 Y
 ↓

rep 32 data = [ar0++] with ram or data;

The vector instruction above performs logical bitwise OR of data loaded
from memory and the contents of the internal ram buffer. This
instruction processes thirty-two words of data. The data coming from
memory are directed to the input Y of the Vector Unit.

The same way data coming from memory can be directed to the input X:
Х
↓

rep 32 data = [ar0++] with data + ram;

The instruction above adds the contents of the internal ram buffer to the
data loaded from the memory location, which address is given by ar0.

The data from memory can be directed to both inputs X and Y of the
Vector Unit, for example:

Х Y
↓ ↓

rep 32 data = [ar0++] with data + data;

RReeggiisstteerrss

3-56 Assembly Language Overview
Version 1.0

The instruction above duplicates on fly the data loaded from memory.

Use of data Register in Bitwise Mask Operations

The bitwise mask application is executed on the Operation Unit. For
mask operations the third input called “mask input” is used in addition to
X and Y. More detailed information about bitwise mask application can
be found in paragraph 1.5.5 on page 1-19. The contents of data can be
used as a mask, for example:

Mask Х Y
↓ ↓ ↓

rep 32 data = [ar0++] with mask data, afifo, ram;

This instruction performs bitwise mask application on the Vector ALU.

Another example demonstrates use of data in mask application
combined with weighted accumulation:

Mask Х Y
↓ ↓ ↓

rep 32 data = [ar0++] with vsum data, ram, afifo;

Cause of Errors When Working With data Register

The following reasons can cause errors when working with data:

• an attempt to use data in the right part of instruction without loading
data from memory in the left part;

In case an error occurs due to the reason indicated above, the instruction
containing an error is not executed. The processor replaces it with an
empty instruction vnul and generates the incorrect vector instruction
interrupt.

3.3.7 Register-Container ram

Load Data to ram ...3-57
Use of ram in Operations on the Operation Unit ..3-57
Use of ram in Bitwise Mask Operations ...3-58
Cause of Errors when Working with ram..3-58

The ram vector register is a FIFO buffer that is able to contain up to
thirty-two 64-bit words. The ram has a single bidirectional port, so
contrary to afifo the data can be either stored into ram or loaded from
ram, but not at the same time.

It mainly serves as a buffer to store the data that can be reused many
times in vector operations.

The ram register is accessible both for reading and writing. However it
can be used only in the vector instructions. Data can be stored into ram
directly from memory or from afifo (see 3.3.5 on page 3-49). The
contents of ram cannot be directly stored into the external memory, but
only through the Operation Unit.

The contents of ram are used as input data for operations on the Vector
ALU and for weighted accumulation on the Active Matrix. The words of

RReeggiisstteerrss

3-57Assembly Language Overview
Version 1.0

data contained in ram can be sent both to the input X of the Operation
Unit and to the input Y.

When the new data are stored into ram its old contents are lost. The ram
vector register can be repeatedly used in vector operations. However, all
data contained in ram must participate in computations. The number of
data in ram and the counter of a vector instruction must be the same.
Mismatch of those counters will cause an incorrect vector instruction
interrupt.

Field RAM_VAL of the intr register (see 3.2.3 on page 3-19) contains
information about the number of words in ram after execution of an
instruction or a group of instructions executed in parallel. This
information is changed once during an instruction execution and it
describes the resultant number of words in ram.

Load Data to ram

Data are loaded directly from the external memory, for example:
rep 16 ram = [ar0++];

This instruction describes load of sixteen 64-bit words of packed data
from the external memory to ram. The old contents of the buffer are lost
even if thirty-two words were stored there.

When ram is loaded from memory the data go through the input data bus,
so it is possible to use the data register to direct them to the Operation
Unit inputs, for example:
rep 32 ram = [ar0++] with data + afifo;

This instruction loads the contents of the memory location to ram and the
same data are transferred to the Vector ALU input X and add to the
contents of afifo.

Use of ram in Operations on the Operation Unit

The data stored in ram can be directed to the input Х of the Operation
Unit, for example:

Х Y
↓ ↓

rep 32 data = [ar0++] with ram and data;

This instruction executes a logical bitwise AND of data stored in ram
and the contents of the memory location. The operation is executed on
the Vector ALU.

The same contents of ram can be directed to the input Y:
Х Y
↓ ↓

rep 32 data = [ar0++] with vsum , data, ram;

This instruction executes weighted accumulation on the Active Matrix.

 The contents of ram can be directed to both inputs: X and Y, for
example:

RReeggiisstteerrss

3-58 Assembly Language Overview
Version 1.0

Х Y
↓ ↓

rep 32 with ram + ram;

This instruction duplicates the contents of ram.

Use of ram in Bitwise Mask Operations

The bitwise mask operations are executed on the Mask Application Unit.
In addition to the inputs X and Y the Mask Application Unit contains the
Mask input. For more details about mask application see paragraph 1.5.4
on page 1-17.

The contents of ram can be directed to the Mask input, for example:
Mask Х Y

↓ ↓ ↓
rep 32 data = [ar0++] with mask ram, afifo, data;

This instruction executes the bitwise mask operation on the Vector ALU.

Another example demonstrates use of ram in mask operation combined
with weighted accumulation:

Mask Х Y
↓ ↓ ↓

rep 32 data = [ar0++] with vsum ram, data, afifo;

Cause of Errors when Working with ram

The following reasons can cause errors when using ram in vector
instructions:

• an attempt to read data from empty ram;

• an attempt to read more data than ram contains;

• an attempt to read less data than ram contains;

• an attempt to simultaneously write to ram and to use its old contents.

In case an error occurs when working with ram, the instruction
containing an error is not executed. The processor replaces it with an
empty instruction nul and generates the incorrect vector instruction
interrupt.

3.3.8 Register-Container wfifo
Clear the Contents of wfifo...3-59
Load Weights to wfifo...3-60
Transfer Weight from wfifo to Shadow Matrix ..3-60
Simultaneous Load from Memory and Transfer to Shadow Matrix3-60
Load Several Weight Sets to wfifo ...3-61
Cause of Errors when Working with wfifo...3-62
Example of Weights Load to wfifo..3-62

The wfifo vector register is a dual port FIFO buffer that is able to
contain up to thirty-two 64-bit words. It serves as a container for weight
coefficients that are then loaded to the Shadow Matrix and to the Active
Matrix.

RReeggiisstteerrss

3-59Assembly Language Overview
Version 1.0

Figure 3-9. Load Weights from External Memory

Vector Unit

External
memory

wfifo
Shadow
Matrix

Active
Matrix

wtwftw

As can be seen from the figure, wfifo is a buffer that is used for fast
data loading from the external memory. It allows the processor to
decrease external data bus activity.

The wfifo register is accessible both for reading and writing. However
it can be used only in vector instructions. Data are loaded wfifo directly
from the external memory. The data stored in wfifo can be directed only
to the Shadow Matrix.

The wfifo register cannot be used as a source buffer for operations on
the Operation Unit. Its only purpose is to store weights.

Unlike other register-containers, the partial data load to wfifo is
possible. The data contained in wfifo may also be partially transferred
to the Shadow Matrix.

For example, on the first stage eight long words are loaded to wfifo.
Then twenty four more words are loaded, so the number of words in
wfifo become thirty two. The same happens when data are transferred
from wfifo to the Shadow Matrix. The number of data words to be
transferred depends on the Matrix configuration. If the Matrix is divided
into eight rows, eight long words will be loaded from wfifo to it. But
wfifo is able to store up to thirty two words, so it is not necessary to use
external data buses to load weights each time the user needs to reload the
Matrix.

Note Weights transfer from wfifo to the Shadow Matrix always takes thirty-
two clock cycles. This is the main restriction to the Vector Unit. All
algorithm designers must take it into account. But this operation can be
executed on the background of other vector and scalar instructions. So, if
weights are changed less often then every 32 clock cycles, the weights
loading will not decrease performance of the NeuroMatrix® NM6403.

Clear the Contents of wfifo

The intr register contains a field that reflects fullness of wfifo. The
field VPF contains the bit EMPTW (bit 10: " wfifo is empty"/" wfifo is
not empty") and the bit FULLW (bit 9: "wfifo is full"/"wfifo is not

RReeggiisstteerrss

3-60 Assembly Language Overview
Version 1.0

full") (see 3.2.3 on page 3-19). The bits reflect the dynamic state of
wfifo (the way its state changes during a vector instruction execution).

The field WFIFO_VAL of the intr register contains information about
the number of words in wfifo after execution of an instruction or a
group of instructions is completed. This information changes more
slowly then the fields EMPTW and FULLW (it describes the result, but not
the process).

The contents of wfifo can be cleared by setting to ‘1’ the bit WFCL (bit
15) of the field FCL in the register pswr (see 3.2.6 on page 3-25). After
the bit WFCL is set, it must be cleared, otherwise the Vector Unit will
clear wfifo every clock cycle until the bit WFCL is set to ‘0’. The
following example shows a fragment of the source code that clears the
contents of wfifo:
begin “.text”

 ...

 pswr set 8000h; // the bit WFCL is set to ‘1’

 pswr clear 8000h; // the bit WFCL is cleared, wfifo is empty
 ...

end “.text”;

Load Weights to wfifo

Weights are loaded to wfifo directly from memory. The wfifo vector
register can be filled with data for one or several instructions, for
example:
rep 16 wfifo = [ar0++]; // load of the first sixteen words

rep 16 wfifo = [ar1++]; // load of the second sixteen words from
 // the different memory location

The first instruction above loads sixteen long words of weight
coefficients to wfifo, and the second one loads sixteen more words from
the different memory location. After the instructions are executed the
total number of words in wfifo is thirty-two.

Transfer Weight from wfifo to Shadow Matrix

The weights contained in wfifo are transferred to the Shadow Matrix.
To do that the instruction ftw is used. It can be a separate instruction, for
example:
ftw;

or it may be included to another vector instruction, for example:
rep 32 data = [ar0++], ftw with not data;

Simultaneous Load from Memory and Transfer to Shadow Matrix

The wfifo vector register is a dual port FIFO buffer. It can be used for
simultaneous load of the new weights and transfer the old ones to the
Shadow Matrix, for example:

RReeggiisstteerrss

3-61Assembly Language Overview
Version 1.0

rep 32 wfifo = [ar0++], ftw;

This instruction executes the parallel load/transfer command. If wfifo
was empty before the instruction starts executing then the weights
transferring to the Shadow Matrix will be locked until the first data word
is loaded from memory to wfifo. When the first data word appears in
the buffer, it will be transferred to the Shadow Matrix in parallel with
loading the next data word from memory.

If wfifo contained some weights to the moment of the instruction
execution, then according to the FIFO principle they will be the first ones
to be sent to the Shadow Matrix. At the same time the new data will be
loaded to wfifo. If the number of weights contained in wfifo to the
moment of the instruction execution is not enough to fill the Shadow
Matrix, a part of new loaded data will be transferred to it.

Load Several Weight Sets to wfifo

The number of words to load to the Shadow Matrix from wfifo is
defined by the Matrix division into rows. Each row of the Matrix is
associated with a 64-bit data word. (see 3.3.3 on page 3-44).

If the number of rows of the Shadow Matrix is rather small it is possible
to contain in wfifo more than one weight set. Several weight sets can be
loaded to wfifo at once and then they will be partially transferred to the
Shadow Matrix. It will cause a decrease in data bus activity and allow the
user application to exploit external buses more effectively, for example:
data "dataMatrix"

 Matrix: long[32] = (...);

end "dataMatrix";

begin "text"

...

sb = 02020202h; // The matrix is divided into eight rows.

ar0 = Matrix; // Load the matrix address to the register.

rep 32 wfifo = [ar0++], ftw, wtw; //load the weights

... // with simultaneous transferring eight of
 // them to the Shadow Matrix.
 // Twenty-four words remained in wfifo.

ftw, wtw; // Load the next eight words
 // to the Shadow Matrix.
... // Sixteen words remained in wfifo.

ftw, wtw; // Load the next eight words
 // to the Shadow Matrix.
... // Eight words remained in wfifo.

ftw, wtw; // Load the next eight words
 // to the Shadow Matrix.
... // wfifo is empty.

RReeggiisstteerrss

3-62 Assembly Language Overview
Version 1.0

end "text";

A weight transferring from wfifo to the Shadow Matrix does not engage
the external bus, so it can proceed in parallel with execution of other
vector and scalar instructions.

Cause of Errors when Working with wfifo

The following reasons cause errors when working with wfifo:

• an attempt to read data from empty wfifo;

• an attempt to load data to full wfifo without simultaneous transfer to
the Shadow Matrix;

In case an error occurs when working with wfifo, the instruction
containing an error is not executed, and the processor is blocked.

Example of Weights Load to wfifo

The following example describes the procedure of weights loading to the
Active Matrix. It is assumed that the Matrix is divided into eight rows
and eight columns. Figure 3-10 presents the diagram of data processing
on the Active Matrix:

Figure 3-10. Load Weights to the Active Matrix

input Х Active Matrix
a256 ... a8 → FF 1 1 FF 1 FF FF 1 63

 the 7th row
a255 ... a7 → 1 1 FF FF FF FF 1 1
a254 ... a6 → 1 FF 1 FF FF 1 FF 1
a253 ... a5 → FF FF FF FF 1 1 1 1
a252 ... a4 → 1 FF FF 1 1 FF FF 1
a251 ... a3 → FF FF 1 1 FF FF 1 1 the 2nd row
a250 ... a2 → FF 1 FF 1 FF 1 FF 1
a249 ... a1 → 1 1 1 1 1 1 1 1 0 the 0th row
32

→
1 63↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 0

d256 d255 d254 d253 d252 d251 d250 d249 32

... ↓
d8 d7 d6 d5 d4 d3 d2 d1 1

Results are stored into afifo
Weights are loaded to the Active Matrix from the external memory. The
memory contents are represented by 64-bit words. Each word consists of
eight 8-bit elements. The registers nb2 and sb2 specify configuration of
the Active Matrix. Each row is associated with a separate 64-bit word.
The 0th word is loaded to the 0th matrix row. As it can be seen from
Figure 3-10, the rows of the Active Matrix are ordered from the bottom
to the top. This order is specified according to the NeuroMatrix®
NM6403 bit order (LSB). Memory addresses increase in the same
direction.

In assembly language the record of weights array is represented as
follows:

RReeggiisstteerrss

3-63Assembly Language Overview
Version 1.0

data "data"

 Matrx: long[8] = (00101010101010101hl, // the zero row

 0FF01FF01FF01FF01hl, //the LS byte

 0FFFF0101FFFF0101hl, // the second row

 001FFFF0101FFFF01hl,

 0FFFFFFFF01010101hl,

 001FF01FFFF01FF01hl,

 00101FFFFFFFF0101hl,

 0FF0101FF01FFFF01hl); // the seventh row

end "data";
Since the NM6403 processor Active Matrix is divided by the register nb2
into eight columns, the least significant bytes of the weight words of the
array are loaded to the 0th column, the first bytes go to the first column,
etc.

Note The Active Matrix rows are ordered from the bottom to the top, the 0th
word of a weight array is loaded to the 0th row. But in an assembly file
the words of data to be loaded to the Matrix are represented in the
inverse order, from the top to the bottom (see the example above).

Weights are loaded from memory. The following example shows how to
load weights to the Active Matrix for further calculations:
begin "text"
<_Func>
 nb1 = 80808080h; // division of the matrix into columns
 sb = 03030303h; // division of the matrix into rows.

 ar0 = Matrx; // Load weight buffer address to ar0.
 rep 8 wfifo = [ar0++], ftw, wtw;
 ...
end "text";

First of all the registers nb1 and sb are initialized. They define the future
Active Matrix configuration. This configuration becomes active after the
instruction wtw is completed.

The 64-bit nb1 and sb registers are initialized with 32-bit constants. The
processor copies those values to both high and low parts of the registers,
i.e. nb1 is initialized with the long constant 8080808080808080hl. The
same is true for the register sb. More detailed information about the
registers nb1 and sb can be found in paragraphs 3.3.2 on page 3-40 and
3.3.3 on page 3-44 respectivly.

Thus the future Active Matrix configuration is defined.

The address of weight array is put to an address register and then data are
loaded from memory to wfifo.

RReeggiisstteerrss

3-64 Assembly Language Overview
Version 1.0

The ftw instruction activates data transfer from wfifo to the Shadow
Matrix. This operation always takes thirty-two cycles, no matter how
many words are loaded to the Matrix. Their conversion to the internal
presentation lasts thirty-two clock cycles. However the conversion is
executed in parallel with other vector and scalar instructions and starts
from the moment of when the first word appears in wfifo.

When the weights transferred to the Shadow Matrix, the instruction wtw
is executed. It copies the contents of the Shadow Matrix to the Active
Matrix. It also copies the contents of the nb1 and sb1 registers to nb2
and sb2 respectively. This operation lasts one clock cycle. Weights’
loading to the Active Matrix is complete.

Assembly Language Overview
Version 1.0

4 Format of Processor Instructions

4.1 TYPES OF SCALAR INSTRUCTIONS ..4-5
4.2 TYPES OF VECTOR INSTRUCTIONS..4-6
4.3 STRUCTURE OF THE PROCESSOR INSTRUCTION WORD..4-6

FFoorrmmaatt ooff PPrroocceessssoorr IInnssttrruuccttiioonnss

4-2 Assembly Language Overview
Version 1.0

FFoorrmmaatt ooff PPrroocceessssoorr IInnssttrruuccttiioonnss

4-3Assembly Language Overview
Version 1.0

The NeuroMatrix® NM6403 incorporates 32-bit and 64-bit instruction.
Any instruction contains two processor operations like addressing and
arithmetic operation. In this sense NM6403 is a scalar microprocessor
with static LIW-architecture.

Length of Instruction Word

The processor instruction formats are:

Short instruction is a 32-bit instruction. It does not contain a constant.

Long instruction is a 64-bit instruction. It contains a 32-bit constant.

The NeuroMatrix® NM6403 address size is thirty-two bits. One memory
cell is used to store short instruction, two memory cells – for long one.

Note Long instructions are always located at even address. On a compilation
stage the assembler aligns long instructions to an even address filling
empty spaces with ‘nul’ instructions if necessary.

Accessing memory the NM6403 fetches two short instructions, or one
long instruction at a time. That is why register pc defining the address of
the next instruction has always an even value. For more details about the
pc register see 3.2.5 on page 3-24.

Types of Processor Instructions

All instructions of the NeuroMatrix® NM6403 are divided into two
groups:

• Scalar instructions are used to control the scalar RISC-core, timers,
to execute all register operations (accessible for reading/writing) with
the exception of the vector registers;

• Vector instructions are used to control the Vector Unit.

Structure of Scalar Instructions

Every instruction of the NeuroMatrix® NM6403 consists of two parts
that are conventionally called "left" and "right". The processor
simultaneously executes both parts of an instruction.

The left part of an instruction is for address commands like memory
access, address modification and so on. The right part is for arithmetic-
logical operations except address calculation and memory addressing.

The left and the right parts of an instruction are split by the reserved
word with. Here is an example of a scalar processor instruction:

gr0 = [ar0++] with gr1 = gr3 << 4;

Right part of an instruction,
arithmetic operation

Left part of an instruction,
address command

Hereafter the left part of an instruction is called a command and the right
one is an operation.

FFoorrmmaatt ooff PPrroocceessssoorr IInnssttrruuccttiioonnss

4-4 Assembly Language Overview
Version 1.0

In an assembler program the left or the right part of an instruction can be
omitted. However, since the processor cannot execute only the left or the
right part of an instruction, an empty operation nul is automatically
added instead of the omitted part during compilation, i.e. an assembly
instruction written as:
gr0 = [ar0++];

is treated by assembler as:
gr0 = [ar0++] with nul;

The same for the left part:
gr1 = gr3 << 4;

is regarded as
nul with gr1 = gr3 << 4;

To improve readability of the program, in case the left or the right part of
an instruction is not used, the reserved word with can be omitted.

Structure of Vector Instructions

The vector instructions as well as the scalar ones are split into the left
and the right parts. But they have an additional field that presents in all
vector instructions except for single instructions ftw and wtw. This field
contains information about a number of repetitions. One vector
instruction can process from one to thirty-two long words of data. It
works according to SIMD (Single Instruction Multiple Data) principle.
The same manipulation performs on up to thirty two 64-bit words of
data. Here is an example of a vector instruction:

 rep 32 data = [ar0++] with vsum , data, 0;

Right part of an instruction,
arithmetic operation

Left part of an instruction,
address command

The left and the right part of a vector instruction are split by the reserved
word ‘with’. The repetition field “rep 32” defines how many 64-bit
words will be processed by the instruction. In most cases a vector
instruction will be executed for as many clock cycles, as the counter
value is, because the Vector Unit spends one clock cycle to process each
long word of data.

In case the left part of an instruction is omitted, the repetition field and
the word with are still on their positions, for instance:
rep 16 with ram - 1; // correct instruction

Any other forms of instruction like the following one:
rep 16 ram - 1; // incorrect instruction

or
with ram - 1; // incorrect instruction

are false. The assembler will inform about it.

FFoorrmmaatt ooff PPrroocceessssoorr IInnssttrruuccttiioonnss

4-5Assembly Language Overview
Version 1.0

Note Vector and scalar instructions cannot be mixed in one instruction. No
matter that one of them has the left part omitted and the other one – the
right part.

4.1 Types of Scalar Instructions
A scalar instruction consists of two parts. The certain types of scalar
commands or operations can be met in each part. The table below shows
the groups of scalar commands that can be met in the left and in the right
part of a scalar instruction.

Table 4-1. Position of Different Types of Commands in a Scalar Instruction

LEFT PART OF SCALAR INSTRUCTION
(COMMAND)

RIGHT PART OF SCALAR
INSTRUCTION (OPERATION)

• Commands of loading registers;

• Commands of copy registers value;

• Commands of address arithmetic;

• Special scalar commands;

• Commands of unconditional and
conditional branch;

• Commands of unconditional and
conditional function calls;

• Commands of return from a function or
an interrupt;

• Empty command.

• Arithmetic operations;

• Logical operations;

• Shift operations;

• Empty operation.

In a scalar instruction any type of command from the left column of the
table can be placed together with any type of operation from the right
column. However, two types of command/operation from the same
column cannot stand together.

The following instruction can be considered as an example of a scalar
instruction containing a left and a right part:
gr4 = [ar0++] with gr0 = gr1 and not gr2;

In the left part the register gr4 is initialized with the contents of the
memory. The register ar0 points to the memory address of a buffer to
process. After the memory cell is read ar0 increments to point to the
next memory address (post-increment).

In the right part a three-operand logical operation is executed. The
processor performs bitwise logical AND of the contents of gr1 register
and the bitwise logical complement of the contents of the gr2 register.
The result is stored into the gr0 register.

FFoorrmmaatt ooff PPrroocceessssoorr IInnssttrruuccttiioonnss

4-6 Assembly Language Overview
Version 1.0

The general-purpose registers can be met in both parts of the instruction,
but the address registers are used only in the left part. Use of the same
general-purpose registers in both parts of a scalar instruction is discussed
in the document NeuroMatrix NM6403 SDK. Assembly Language
Overview. Detailed Description of Instructions.

4.2 Types of Vector Instructions
A vector instruction, as well as a scalar one, consists of a left and a right
part. The left part is for address operations, the right one is for vector
operations. The table below shows, which types of commands can be
located in the left part and which in the right part of a vector instruction.

Table 4-2. Position of Different Types of Commands in Vector Instruction

LEFT PART OF VECTOR
INSTRUCTION
(COMMAND)

RIGHT PART OF VECTOR
INSTRUCTION (OPERATION)

• Command of loading data to the
Vector Unit internal FIFOs;

• Command of storing the
processed data from the Vector
Unit internal accumulation FIFO
(afifo) to memory;

• Special vector commands (ftw,
wtw);

• Empty vector command.

• Weighted accumulation
(multiplication and accumulation);

• Mask application operation;

• Arithmetic operations;

• Logical operations;

• Cyclic shift right operation;

• Activation functions application;

• Store control vector registers in
memory;

• Empty operation.

Here is an example of a vector instruction with a left and a right part:
rep 32 ram = [ar0++gr0] with vsum , data, afifo;

The reserved word ‘with’ splits the instruction into the left and the right
part. The repeat counter rep number contains the number of 64-bit
words to be processed. The command of data loading to the internal
buffer ram is executed in the left part of the instruction. In the right part
the data passing to ram via the data bus are dubbed and directed to the
Active Matrix to execute weighted accumulation.

4.3 Structure of Processor Instruction Word
The processor instructions are of 32-bit and 64-bit length. The 64-bit
instructions have the same structure of low word as the 32-bit ones. The
high word is used to contain 32-bit constant.

FFoorrmmaatt ooff PPrroocceessssoorr IInnssttrruuccttiioonnss

4-7Assembly Language Overview
Version 1.0

The processor instruction word has codes of two commands, a flag of
parallel execution and a constant used by this instruction (only 64-bit
instructions):

Figure 4-1. Structure of NM6403 Mashine Instruction Word

63 HIGH WORD 32 31 LOW WORD 0

constant (used by long instructions) P left part (command) right part (operation)

Bit Р indicates whether the processor should execute vector and scalar
instructions using different processor resources sequentially or in
parallel.

Table 4-3 gives a list of scalar and vector instructions with indication of
their length in 32-bit words.

The first column of the table indicates the conventional index of a
processor instruction word. These indexes are introduced to make the
reference to processor instruction word structure easier and they are used
later in this document.

Table 4-3. The Complete List of NeuroMatrix NM6403 Mashine Instructions

№ INSTRUCTION MEANING LENGTH CONTENTS OF THE HIGH
WORD OF AN INSTRUCTION

1.1 Load/store of a register in memory 1 –

1.2 Load/store of a register in memory 2 Address incrementation

2.1 «register-register» transfer 1 –

2.2 Load of a constant to a register 2 Constant

3.1 Address register modification 1 –

3.2 Address register modification 2 Modification constant

3.3 Empty instruction 1 –

3.4 Empty instruction 2 Any constant

4.1 Sub-routine call 1 –

4.2 Sub-routine call 2 Relative incrementation
constant

4.3 Return from an interrupt/ sub-
routine

1 –

5.1 Vector load/store 1 –

5.2 Load of weights from memory 1 –

5.3 Empty vector instruction 1 –

The complete description of the instructions NM6403 see chapter 7 of
the document NeuroMatrix NM6403 SDK. User’s Guide.

FFoorrmmaatt ooff PPrroocceessssoorr IInnssttrruuccttiioonnss

4-8 Assembly Language Overview
Version 1.0

Assembly Language Overview
Version 1.0

5 Assembly Instruction Set Summary

5.1 NM6403 SCALAR INSTRUCTIONS SUMMARY...5-3
5.1.1 No Operation Command...5-3
5.1.2 Load Commands... 5-4
5.1.3 Store Commands.. 5-7
5.1.4 Stack Access Commands...5-10
5.1.5 Register Copy Commands..5-12
5.1.6 Register Initialization with Constant..5-15
5.1.7 Address Register Modification Commands...5-16
5.1.8 Register pswr Modification Commands ..5-17
5.1.9 Branch Commands ...5-17

5.1.9.1 Branch Unconditionally ...5-18
5.1.9.2 Sub-Routine Call ...5-19
5.1.9.3 Return from Sub-Routine/Interrupt..5-20
5.1.9.4 Branch Conditions...5-20

5.1.10 Set of Basic Scalar Operations...5-22
5.1.11 Arithmetic Operations ...5-23
5.1.12 Logical Operations..5-24
5.1.13 Flags Setting Operations ..5-25
5.1.14 Shift Operations .. 5-27

5.2 VECTOR INSTRUCTIONS ...5-29
5.2.1 Data Load and Store in Vector Instructions ..5-29
5.2.2 Vector No Operation Commands..5-31
5.2.3 Vector Logical Operations ..5-32
5.2.4 Vector Arithmetic Operations..5-33
5.2.5 Mask Application Operations ..5-34
5.2.6 Weighted Accumulation ..5-35
5.2.7 Activation Operations..5-36
5.2.8 Weights Loading ... 5-38
5.2.9 Store the Vector Unit Control Registers..5-39

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-2 Assembly Language Overview
Version 1.0

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-3Assembly Language Overview
Version 1.0

This section gives a structured summary of the instruction set of the
NeuroMatrix® NM6403 assembly language. The summary consists of
two subsections: overview of the set of scalar and the set of vector
instructions. Instructions are grouped according to their types. For each
command or operation its position in the assembler instruction is given
(in what part of the instruction – left or right it may appear).

5.1 NM6403 Scalar Instructions Summary
This section gives the complete list of the processor scalar instructions
with brief comments.

All scalar instructions of the processor are grouped into tables according
to their functionality. The first column explains the instruction
functionality. The second one describes the instruction syntax. The third
one contains the size of an instruction and the fourth gives a type of the
instruction code.

Size of an assembly instruction is defined by the left part. If a constant is
used the instruction takes 64-bit. A 32-bit constant may appear only in
the left part of the instruction. Shift values are not regarded as constant
because they are put to the particular instruction field (6 bits) inside the
right part of the processor instruction.

In case syntax defines only the right part of an assembly instruction, the
instruction size is missed (marked with “-”).

Since the processor instructions contain the left and the right parts, the
discussed command or the operation is underlined. Non-underlined parts
of an instruction are actual commands or operations given to retain the
idea of the instruction structure.

Unless otherwise arranged, the arbitrary address register or general-
purpose register can be used in syntax description.

5.1.1 No Operation Command

DESCRIPTION SYNTAX SIZE TYPE

No operation command nul; 1 3.3

Long no operation command nul Const; 2 3.4

No operation command in the left part
of an instruction

nul with gr0 += gr1; - 3.3, 3.4

No operation command in the left part
of an instruction (*)

gr0 += gr1; - 3.3, 3.4

No operation command in the left part
of an instruction

nul Const with gr0 += gr1; 2 3.4

No operation command in the right part
of an instruction (*)

[ar0++] = gr0; 1 3.3

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-4 Assembly Language Overview
Version 1.0

No operation command in the right part
of an instruction (**)

with gr0 = gr1 >> 0;
ar0 = gr2 with gr0 = gr1 >> 0;

- 3.3, 3.4

Note Instructions marked with (*) show that in case there is a no operation
command in the left or the right part of an instruction the no operation
part can be omitted.

Note In the instruction marked with (**) any type of shift 0 or shift 32 is
considered a no operation command. The content of the source register
does not copy to the destination register. The content of the destination
register remains the same as before the operation.

5.1.2 Load Commands
Load commands are located only in the left part of an assembly
instruction.

In addition to instruction syntax (bold) an example of a scalar instruction
with the non-empty right part is given.

DESCRIPTION SYNTAX SIZE TYPE

Load the contents of the source
memory location expressed by a
constant into an address register.

ar0 = [Const_Addr];
ar0 = [Const] with gr1 = gr2 and gr3;

2 1.2

Load the contents of the source
memory location expressed by a
constant into a general-purpose
register.

gr0 = [Const_Addr];
gr0 = [Const] with gr1 = gr2 A>> 1;

2 1.2

Load the contents of the source
memory location expressed by a
constant into a register pair. (*)

ar0,gr0 = [Const_Addr];
ar0,gr0 = [Const] with gr1 += gr2;

2 1.2

Load the contents of the source
memory location into an address
register.

ar0 = [ar1];
ar0 = [ar1] with gr1 -= gr2;

1 1.1

Load the contents of the source
memory location into a general-
purpose register.

gr0 = [ar1];
gr0 = [ar1] with gr1 = not gr2;

1 1.1

Load the contents of the source
memory location into a register pair.
(*)

ar0,gr0 = [ar1];
ar0,gr0 = [ar1] with gr1 += gr2;

1 1.1

Load the contents of the source
memory location into an address
register (general-purpose register
addressing).

ar0 = [gr4];
ar0 = [gr4] with gr1 = -gr2;

1 1.1

Load the contents of the source
memory location into a general-
purpose register (general-purpose
register addressing).

gr0 = [gr1];
gr0 = [gr1] with gr1 = gr2 << 10;

1 1.1

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-5Assembly Language Overview
Version 1.0

Load the contents of the source
memory location into a register pair
(general-purpose register
addressing). (*)

ar0,gr0 = [gr1];
ar0,gr0 = [gr1] with gr1 = gr2 or gr3;

1 1.1

Load the contents of the source
memory location into an address
register with the address
postincrementation.

ar0 = [ar1++];
ar0 = [ar1++] with gr1 -= gr2;

1 1.1

Load the contents of the source
memory location into a general-
purpose register with the address
postincrementation.

gr0 = [ar1++];
gr0 = [ar1++] with gr1 -= gr2;

1 1.1

Load the contents of the source
memory location into a register pair
with the address postincrementation
The address is incremented by 2. (*)

ar0,gr0 = [ar1++];
ar0,gr0 = [ar1++] with gr1 += gr2;

1 1.1

Load the contents of the source
memory location into an address
register with the address
preincrementation.

ar0 = [--ar1];
ar0 = [--ar1] with gr1 -= gr2;

1 1.1

Load the contents of the source
memory location into a general-
purpose register with the address
preincrementation.

gr0 = [--ar1];
gr0 = [--ar1] with gr1 -= gr2;

1 1.1

Load the contents of the source
memory location into a register pair
with the address preincrementation
The address is decremented by 2.
(*)

ar0,gr0 = [--ar1];
ar0,gr0 = [--ar1] with gr1 += gr2;

1 1.1

Load the contents of the source
memory location into an address
register with the address
postincrementation by a value of the
related general-purpose register. (*)

ar0 = [ar1++gr1];
ar0 = [ar1++gr1] with gr1 -= gr2;

1 1.1

Load the contents of the source
memory location into a general-
purpose register with the address
postincrementation by a value of the
related general-purpose register. (*)

gr0 = [ar1++gr1];
gr0 = [ar1++gr1] with gr1 -= gr2;

1 1.1

Load the contents of the source
memory location into a register pair
with the address postincrementation
by the value of a related general-
purpose register. (*)

ar0,gr0 = [ar1++gr1];
ar0,gr0 = [ar1++gr1] with gr1 += gr2;

1 1.1

Load the contents of the source
memory location into an address
register with the address
preincrementation by a value of the
related general-purpose register. (*)

ar0 = [ar1+=gr1];
ar0 = [ar1+=gr1] with gr1 -= gr2;

1 1.1

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-6 Assembly Language Overview
Version 1.0

Load the contents of the source
memory location into a general-
purpose register with the address
preincrementation by a value of the
related general-purpose register. (*)

gr0 = [ar1+=gr1];
gr0 = [ar1+=gr1] with gr1 -= gr2;

1 1.1

Load the contents of the source
memory location into a register pair
with the address preincrementation
by a value of the related general-
purpose register. (*)

ar0,gr0 = [ar1+=gr1];
ar0,gr0 = [ar1+=gr1] with gr1 += gr2;

1 1.1

Load the contents of the source
memory location into an address
register with preliminary
initialization of an address register
by a value of the related general-
purpose register. (*)

ar0 = [ar1=gr1];
ar0 = [ar1=gr1] with gr1 -= gr2;

1 1.1

Load the contents of the source
memory location into a general-
purpose register with preliminary
initialization of an address register
by a value of the related general-
purpose register. (*)

gr0 = [ar1=gr1];
gr0 = [ar1=gr1] with gr1 -= gr2;

1 1.1

Load the contents of the source
memory location into a register pair
with preliminary initialization of an
address register by a value of the
related general-purpose register. (*)

ar0,gr0 = [ar1=gr1];
ar0,gr0 = [ar1=gr1] with gr1 += gr2;

1 1.1

Load the contents of the source
memory location into an address
register with preliminary
initialization of an address register
by the constant expression.

ar0 = [ar1=Const_Addr];
ar0 = [ar1=Const] with gr1 -= gr2;

2 1.1

Load the contents of the source
memory location into a general-
purpose register with preliminary
initialization of an address register
by the constant expression.

gr0 = [ar1=Const_Addr];
gr0 = [ar1=Const] with gr1 -= gr2;

2 1.1

Load the contents of the source
memory location into a register pair
with preliminary initialization of an
address register by the constant
expression. (*)

ar0,gr0 = [ar1=Const_Addr];
ar0,gr0 = [ar1=Const] with gr1 += gr2;

2 1.1

Load the contents of the source
memory location into an address
register with the address
preincrementation by the constant
expression.

ar0 = [ar1+=Const];
ar0 = [ar1-=Const];

ar0 = [ar1+=Const] with gr1 -= gr2;

2 1.1

Load the contents of the source
memory location into a general-
purpose register with the address
preincrementation by the constant
expression.

gr0 = [ar1+=Const];
gr0 = [ar1-=Const];

gr0 = [ar1+=Const] with gr1 -= gr2;

2 1.1

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-7Assembly Language Overview
Version 1.0

Load the contents of the source
memory location into a register pair
with the address preincrementation
by the constant expression. (*)

ar0,gr0 = [ar1+=Const];
ar0,gr0 = [ar1-=Const];

ar0,gr0 = [ar1+=Const] with gr1;

2 1.1

Note In the instructions marked with (*) register pairs are used. They are
formed by address registers and general-purpose registers with the same
number, for instance: (ar3, gr3) or (ar5, gr5). Registers with
different numbers cannot form a register pair. A register pair contains a
64-bit word. The high thirty-two bits are always located in the address
register; the low bits are in the general-purpose register. This thing does
not depend on the order of the registers in an assembly instruction. For
more information about register pairs see 3.1.3 on page 3-4.

Note The type of a load instruction: load 64 bits or 32 bits, is defined by a
recipient register.

5.1.3 Store Commands
Store commands are located only in the left part of an assembly
instruction.

In addition to instruction syntax (bold) an example of a scalar instruction
with the non-empty right part is given.

DESCRIPTION SYNTAX SIZE TYPE

Store the contents of an address
register into the destination memory
location expressed by a constant.

[Const_Addr] = ar0;
[Const] = ar0 with gr1 = gr2 and gr3;

2 1.2

Store the contents of a general-
purpose register into the destination
memory location expressed by a
constant.

[Const_Addr] = gr0;
[Const] = gr0 with gr1 = gr2 A>> 1;

2 1.2

Store the contents of a register pair
into the destination memory
location expressed by a constant. (*)

[Const_Addr] = ar0,gr0;
[Const] = ar0,gr0 with gr1 += gr2;

2 1.2

Store the contents of an address
register into the destination memory
location.

[ar0] = ar1;
[ar0] = ar1 with gr1 -= gr2;

1 1.1

Store the contents of a general-
purpose register into the destination
memory location.

[ar1] = gr0;
[ar1] = gr0 with gr1 = not gr2;

1 1.1

Store the contents of a register pair
into the destination memory
location. A long word is stored into
memory. (*)

[ar1] = ar0,gr0;
[ar1] = ar0,gr0 with gr1 += gr2;

1 1.1

Store the contents of an address [gr0] = ar4; 1 1.1

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-8 Assembly Language Overview
Version 1.0

register into the destination memory
location (general-purpose register
addressing).

[gr0] = ar4 with gr1 = -gr2;

Store the contents of a general-
purpose register into the destination
memory location (general-purpose
register addressing).

[gr0] = gr1;
[gr0] = gr1 with gr1 = gr2 << 10;

1 1.1

Store the contents of a register pair
into the destination memory
location. A long word is stored into
memory. (general-purpose register
addressing). (*)

[gr1] = ar0,gr0;
[gr1] = ar0,gr0 with gr1 = gr2 or gr3;

1 1.1

Store the contents of an address
register into the destination memory
location with the address
postincrementation.

[ar0++] = ar1;
[ar0++] = ar1 with gr1 -= gr2;

1 1.1

Store the contents of a general-
purpose register into the destination
memory location with the address
postincrementation.

[ar1++] = gr0;
[ar1++] = gr0 with gr1 -= gr2;

1 1.1

Store the contents of a register pair
into the destination memory
location with the address
postincrementation. The address is
incremented by 2. (*)

[ar1++] = ar0,gr0;
[ar1++] = ar0,gr0 with gr1 += gr2;

1 1.1

Store the contents of an address
register into the destination memory
location with the address
predecrementation.

[--ar1] = ar0;
[--ar1] = ar0 with gr1 -= gr2;

1 1.1

Store the contents of a general-
purpose register into the destination
memory location with the address
predecrementation.

[--ar1] = gr0;
[--ar1] = gr0 with gr1 -= gr2;

1 1.1

Store the contents of a register pair
into the destination memory
location with the address
predecrementation. The address is
decremented by 2. (*)

[--ar1] = ar0,gr0;
[--ar1] = ar0,gr0 with gr1 += gr2;

1 1.1

Store the contents of an address
register into the destination memory
location with the address
postincrementation by a value of the
related general-purpose register. (*)

[ar1++gr1] = ar0;
[ar1++gr1] = ar0 with gr1 -= gr2;

1 1.1

Store the contents of a general-
purpose register into the destination
memory location with the address
postincrementation by a value of the
related general-purpose register. (*)

[ar1++gr1] = gr0;
[ar1++gr1] = gr0 with gr1 -= gr2;

1 1.1

Store the contents of a register pair
into the destination memory
location with the address
postincrementation by a value of the

[ar1++gr1] = ar0,gr0;
[ar1++gr1] = ar0,gr0 with gr1 += gr2;

1 1.1

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-9Assembly Language Overview
Version 1.0

related general-purpose register. (*)

Store the contents of an address
register into the destination memory
location with the address
preincrementation by a value of the
related general-purpose register. (*)

[ar1+=gr1] = ar0;
[ar1+=gr1] = ar0 with gr1 -= gr2;

1 1.1

Store the contents of a general-
purpose register into the destination
memory location with the address
preincrementation by a value of the
related general-purpose register. (*)

[ar1+=gr1] = gr0;
[ar1+=gr1] = gr0 with gr1 -= gr2;

1 1.1

Store the contents of a register pair
into the destination memory
location with the address
preincrementation by a value of the
related general-purpose register. (*)

[ar1+=gr1] = ar0,gr0;
[ar1+=gr1] = ar0,gr0 with gr1 += gr2;

1 1.1

Store the contents of an address
register into the destination memory
location with preliminary
initialization of an address register
by a value of the related general-
purpose register. (*)

[ar1=gr1] = ar0;
[ar1=gr1] = ar0 with gr1 -= gr2;

1 1.1

Store the contents of a general-
purpose register into the destination
memory location with preliminary
initialization of an address register
by a value of the related general-
purpose register. (*)

[ar1=gr1] = gr0;
[ar1=gr1] = gr0 with gr1 -= gr2;

1 1.1

Store the contents of a register pair
into the destination memory
location with preliminary
initialization of an address register
by a value of the related general-
purpose register. (*)

[ar1=gr1] = ar0,gr0;
[ar1=gr1] = ar0,gr0 with gr1 += gr2;

1 1.1

Store the contents of an address
register into the destination memory
location with preliminary
initialization of an address register
by the constant expression.

[ar1=Const_Addr] = ar0;
ar0 = [ar1=Const] with gr1 -= gr2;

2 1.2

Store the contents of a general-
purpose register into the destination
memory location with preliminary
initialization of an address register
by the constant expression.

[ar1=Const_Addr] = gr0;
[ar1=Const] = gr0 with gr1 -= gr2;

2 1.2

Store the contents of a register pair
into the destination memory
location with preliminary
initialization of an address register
by the constant expression. (*)

[ar1=Const_Addr] = ar0,gr0;
[ar1=Const] = ar0,gr0 with gr1 += gr2;

2 2

Store the contents of an address
register into the destination memory
location with the address

[ar1+=Const] = ar0;
[ar1-=Const] = ar0;

2 1.2

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-10 Assembly Language Overview
Version 1.0

preincrementation by the constant
expression.

[ar1+=Const] = ar0 with gr1 -= gr2;

Store the contents of a general-
purpose register into the destination
memory location with the address
preincrementation by the constant
expression.

[ar1+=Const] = gr0;
[ar1-=Const] = gr0;

[ar1+=Const] = gr0 with gr1 -= gr2;

2 1.2

Store the contents of a register pair
into the destination memory
location with the address
preincrementation by the constant
expression. (*)

[ar1+=Const] = ar0,gr0;
[ar1-=Const] = ar0,gr0;

[ar1+=Const] = ar0,gr0 with gr1;

2 1.2

Note In the instructions marked with (*) register pairs are used. They are
formed by address registers and general-purpose registers with the same
number, for instance: (ar3, gr3) or (ar5, gr5). Registers with
different numbers cannot form a register pair. A register pair contains a
64-bit word. The high thirty-two bits are always located in the address
register, the low bits are in the general-purpose register. This thing does
not depend on the order of the registers in an assembly instruction. For
more information about register pairs see 3.1.3 on page 3-4.

Note The type of a store instruction: store 64 bits or 32 bits, is defined by a
source register.

5.1.4 Stack Access Commands
Stack access commands are located only in the left part of an assembly
instruction. Only contents of the read/write accessible registers can be
stored into the system stack and restored from the stack (see Table 5-1).

In addition to instruction syntax (bold) an example of a scalar instruction
with the non-empty right part is given.

DESCRIPTION SYNTAX SIZE TYPE

Push the contents of an address register
onto the top of the system stack.

push ar0;
push ar0 with gr7 = gr1 + gr2;

1 1.1

Push the contents of a general-purpose
register onto the top of the system stack.

push gr0;
push gr0 with gr7 = gr0;

1 1.1

Push the contents of a register pair onto the
top of the system stack. (*)

push ar0,gr0;
push ar0,gr0 with gr1 = not gr1;

1 1.1

Pop the contents of the top of the system
stack into an address register.

pop ar0;
pop ar0 with gr7 = gr0 << 2;

1 1.1

Pop the contents of the top of the system
stack into a general-purpose register.

pop gr0;
pop gr0 with gr7 = gr0;

1 1.1

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-11Assembly Language Overview
Version 1.0

Pop the contents of the top of the system
stack into a register pair. (*)

pop ar0,gr0;
pop ar0,gr0 with gr1 += gr2;

1 1.1

Remove a value from the top of the system
stack.

pop;
pop with gr7 -= gr0;

1 1.1

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-12 Assembly Language Overview
Version 1.0

Note In the instruction marked with (*) a 64-bit word is stored at the top of the
system stack keeping the top even. The requirement to the stack top to be
even arises from the fact that in case an interrupt occurs and a program
returns from an interrupt the program can return to the correct address
only if the stack top was even at the moment of the interrupt. Since an
interrupt can occur at any moment, it is necessary to always keep the
stack top even. That’s why while working with the system stack it is
recommended to push/pop register pairs. It takes the same time to
push/pop a register pair as a single register.

5.1.5 Register Copy Commands
This group of commands copies the contents of a source register to a
destination register. Any read accessible register can be used as the
source register. Any write accessible register can be used as the
destination register.

Note Memory to memory copy commands are not supported by the processor.
Constant to register copy commands are referred to as ‘register
initialization with a constant’ commands (see 5.1.6 on page 5-15).

Table 5-1 contains a list of read/write accessible registers and register
pairs of the NeuroMatrix® NM6403:

Table 5-1. List of Read/Write Accessible Registers and Register Pairs

REGISTERS REGISTER PAIRS

ar0,
...

ar7(sp)

gr0,
...
gr7

(ar0, gr0),
...

(ar7, gr7)

icc0 ica0 (icc0, ica0)

icc1 ica1 (icc1, ica1)

occ0 oca0 (occ0, oca0)

occ1 oca1 (occ1, oca1)

t0 t1 (t0, t1)

pswr pc (pswr, pc)

lmicr gmicr -

Any register and register pair given in the table above can be both the
source and the destination.

Table 5-2 contains a list of write accessible registers of the
NeuroMatrix® NM6403:

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-13Assembly Language Overview
Version 1.0

Table 5-2. List of Write Accessible Registers

32-BIT REGISTERS 64-BIT REGISTERS

nb1l nb1h nb1

sbl sbh sb

f1crl f1crh f1cr

f2crl f2crh f2cr

vrl vrh vr

All write accessible registers are the Vector Unit control registers. The
Vector Unit registers are 64 bits long. But it is possible to access their
32-bit low- and high-order parts separately. The low-order parts of all
vector registers are marked with index l and the high-order parts – with
index h.

The only read-only register is a 32-bit intr.

Copy commands are located only in the left part of an assembly
instruction.

In addition to instruction syntax (bold) an example of a scalar instruction
with the non-empty right part is given.

DESCRIPTION SYNTAX SIZE TYPE

Copy the contents of a source address
register to a destination address register.
(*)

ar2 = ar0;

ar2 = ar0 set;
ar2 = ar0 with gr1 = gr2 and gr3;

1 2.1

Copy the contents of an address register to
a general-purpose register.

gr0 = ar3;
gr0 = ar3 with gr1 = gr0 A>> 1;

1 2.1

Copy the contents of a general-purpose
register to an address register. (*)

ar0 = gr5;

ar0 = gr5 set;
ar0 = gr5 with gr1 = gr0 and gr5;

1 2.1

Copy the contents of a source general-
purpose register to a destination general-
purpose register.

gr0 = gr5;
gr0 = gr5 with gr1 = gr0 or gr1;

1 2.1

Copy the contents of a source register pair
to a destination register pair.

ar0,gr0 = ar4,gr4;
ar0,gr0 = ar4,gr4 with not gr1;

1 2.1

Copy the contents of an address register
pair to a register pair. The same contents
copies to both destination registers. (**)

ar0,gr0 = ar5;
ar0,gr0 = ar5 with gr1++;

1 2.1

Copy the value of a general-purpose
register to a register pair. After this
operation both destination registers have
the same contents. (**)

ar0,gr0 = gr4;
ar0,gr0 = gr4 with gr2 = gr1 - 1;

1 2.1

Copy the contents of an address register to
the low/high part (32-bit) of a special

nb1l = ar5; 1 2.1

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-14 Assembly Language Overview
Version 1.0

vector control register. nb1l = ar5 with gr0 += gr1;

Copy the contents of a general-purpose
register to the low/high part (32-bit) of a
special vector control register.

vrh = gr4;
vrh = gr4 with gr1 = gr1 << 3;

1 2.1

Copy the contents of an address register to
a special vector control register (64-bit).
The same contents copies to the high and
low parts of the destination register. (**)

sb = ar5;
sb = ar5 with gr0 -= gr1;

1 2.1

Copy the contents of a general-purpose
register to a special vector control register
(64-bit). The same contents copies to the
high and low parts of the destination
register. (**)

f1cr = gr4;
f1cr = gr4 with gr1 = not gr1;

1 2.1

Copy the contents of a register pair to a
special vector control register (64 bit).
The contents of the address register copies
to the high part of the destination register.

nb1 = ar5,gr5;
nb1 = ar5,gr5 with gr0 -= gr1;

1 2.1

Copy the contents of a special register to
an address register.

ar5 = lmicr;
ar5 = lmicr with gr0 = - gr1;

1 2.1

Copy the contents of a special register to a
general-purpose register.

gr7 = t1;
gr7 = t1 with gr1 = not gr1;

1 2.1

Copy the contents of a special register to a
register pair. The same contents copies to
both destination registers. (**)

ar5,gr5 = ica1;
ar5,gr5 = ica1 with gr0 = - gr1;

1 2.1

Note Copy commands allow the user to copy the contents of one address
register to another inspite of they may belong to different address
register groups (see 3.1.1 on page 3-3).

Note Some of copy commands are very similar to address register modification
commands. The difference is that the assembler translates them into
different processor instruction words. The modifier ‘set’ is used to
specify the processor instruction word. If this modifier is set up, the
assembler will always translate this command to the instruction 2.1/2.2.
The modifier ‘set’ can be omitted because the assembler translates it to a
copy command by default.

Note In the instructions marked with (**) processor copy the contents of a 32-
bit register to a special vector control register (64-bit) or to a register
pair. After this operation both destination registers or high and low parts
of a special vector control register have the same contents.

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-15Assembly Language Overview
Version 1.0

5.1.6 Register Initialization with Constant
Commands of register initialization with a constant or a constant
expression are used to transfer a 32-bit constant to a destination register.
The destination register can be any write accessible register (see Table
5-1 and Table 5-2).

Commands of register initialization with a constant are located only in
the left part of an assembly instruction.

In addition to instruction syntax (bold) an example of a scalar instruction
with the non-empty right part is given.

DESCRIPTION SYNTAX SIZE TYPE

Initialization of an address register with a
constant (*)

ar2 = Const;

ar2 = Const set;
ar2 = Const with gr1--;

2 2.2

Initialization of a general-purpose register
with a constant.

gr0 = Const;
gr0 = Const with gr1 = gr0 A>> 1;

2 2.2

Initialization of a register pair with a
constant. (**)

ar2,gr2 = Const;
ar2,gr2 = Const with gr1++;

2 2.2

Initialization of a special register with a
constant.

occ1 = Const;
occ1 = Const with gr1 = - gr2;

2 2.2

Initialization of a low/high part (32-bit) of
a vector control register with a constant.

sbl = Const;
gr0 = Const with gr1 = gr0 >> 12;

2 2.2

Initialization of a vector control register
(64-bit) with a 32-bit constant. The
constant copies to both low and high parts
of the destination register. (**)

nb1 = Const;
nb1 = Const with gr1 = gr2 - 1;

2 2.2

Note Some of copy commands are very similar to address register modification
commands. The difference is that the assembler translates them into
different processor instruction words. The modifier ‘set’ is used to
specify the processor instruction word. If this modifier is set up, the
assembler will always translate this command to the instruction 2.1/2.2.
The modifier ‘set’ can be omitted because the assembler translates it to a
copy command by default.

Note In the instructions marked with (**) processor copy the contents of a 32-
bit register to a special vector control register (64-bit) or to a register
pair. After this operation both destination registers or high and low parts
of a special vector control register have the same contents.

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-16 Assembly Language Overview
Version 1.0

5.1.7 Address Register Modification Commands
Address register modification commands are located only in the left part
of an assembly instruction.

The address register modification commands are sensitive to the address
register groups (see 3.1.1 on page 3-3). All address registers are divided
into two groups. The first group contains the registers ar0,...,ar3
while the second one contains the registers ar4,...,ar7. The division
is due to two address generators (DAG) of the processor (see Figure 1-3).
The first group of registers is mapped to the DAG1, the second group to
the DAG2.

Address registers from the same group can stand in a modification
command but not from different groups. For example, the instruction
ar0 = ar2+gr2; // correct command

is correct while the instruction
ar0 = ar4+gr4; // error command

will cause the compilation error.

Division into the groups does not concern general-purpose registers, i.e.
any address register can be modified by any general-purpose register.

In addition to instruction syntax (bold) an example of a scalar instruction
with the non-empty right part is given.

DESCRIPTION SYNTAX SIZE TYPE

Modification of a destination address
register with the contents of a sources
address register. (*)

ar3 = ar0 addr;
ar3 = ar0 addr with gr1 = gr2 and

gr3;

1 3.1

Modification of a destination address
register with the contents of a source
general-purpose register. (*)

ar0 = gr7 addr;
ar0 = gr7 addr with gr1 = gr2 xor

gr3;

1 3.1

Modification of a destination address
register with the sum of registers of a
register pair.

ar5 = ar6+gr6;
ar5 = ar6+gr6 with gr1 = gr2 - gr3;

1 3.1

Modification of a destination address
register with the sum of an address
register and a constant.

ar4 = ar6+Const;
ar4 = ar6+Const with gr1 = gr2 C>> 1;

2 3.2

Modification of an address register with
a constant. (*)

ar1 = Const addr;
ar5 = ar6+Const with gr1 = gr2;

2 3.2

Incrementation of an address register. ar4++;
ar4++ with gr1 += gr2;

1 3.1

Decrementation of an address register. ar4--;
ar4-- with gr1 = - gr2;

1 3.1

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-17Assembly Language Overview
Version 1.0

Incrementation of an address register
with the contents of the related general-
purpose register. This command is valid
only for registers of a register pair.

ar2+=gr2;
ar2+=gr2 with gr1 = not gr2;

1 3.1

Incrementation of an address register
with a constant.

ar4+=Const;
ar4+=Const with gr1 -= gr2;

2 3.2

Decrementation of an address register
with a constant.

ar4-=Const;
ar2-=Const with gr1;

2 3.2

Note Some of address register modification commands are very similar to copy
commands (see 5.1.5 on page 5-12). The difference is that the assembler
translates them into different processor instruction words. The commands
marker with (*) contain the modifier ‘addr’, which is used to specify the
processor instruction word. If this modifier is set, the assembler will
always translate this command to the mashine instruction 3.1/3.2 (see 4.3
on page 4-6).

5.1.8 Register pswr Modification Commands
The register pswr describes the processor status.

Although pswr is a read/write accessible register, there are special
assembly instructions to modify it.

The pswr modification instructions are located in the left part of a
scalar instruction.

In addition to instruction syntax (bold) an example of a scalar instruction
with the non-empty right part is given.

DESCRIPTION SYNTAX SIZE TYPE

Set the desired bits of the pswr register, i.e.
perform a bitwise logical OR of the contents of
the pswr register and a constant.

pswr set Const;
pswr set Const with gr1++;

2 2.3

Clear the desired bits of the pswr register, i.e.
perform a bitwise logical AND NOT of the
contents of the pswr register and a constant

pswr clear Const;
pswr clear Const with gr1--;

2 2.3

5.1.9 Branch Commands

The NeuroMatrix® NM6403 supports the following types of branch
commands:

• Conditional and unconditional branch;

• Conditional and unconditional sub-routine call;

• Conditional and unconditional return from a sub-routine;

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-18 Assembly Language Overview
Version 1.0

• Conditional and unconditional return from an interrupt.

All of branch commands can be standard or delayed. To distinguish the
delayed branch command from the standard the reserved word delayed
is written before the branch command.

Processor will execute a delayed jump if the reserved word delayed is
found in the assembly instruction.

Conditional branch is executed according to the flags preset in pswr. The
flags are set by the operation executed before the current branch
instruction.

Only arithmetic and logical operations in the right part of an assembly
instruction affect the flags status.

5.1.9.1 Branch Unconditionally

Commands of unconditional branch are located only in the left part of an
assembly instruction.

In addition to instruction syntax (bold) an example of a scalar instruction
with the non-empty right part is given.

DESCRIPTION SYNTAX SIZE TYPE

Branch unconditionally to the absolute
address given by a constant.

goto Const_Addr;
goto Const_Addr with gr1++;

2 4.2

Branch unconditionally to the address
given by an address register.

goto ar0;
goto ar0 with gr1--;

1 4.1

Branch unconditionally to the address
given by a general-purpose register.

goto gr0;
goto gr0 with gr1 = -gr1;

1 4.1

Branch unconditionally to the address
given by the sum of the contents of
registers of a register pair.

goto ar0+gr0;
goto ar0+gr0 with gr1 = not gr1;

1 4.1

Branch unconditionally to the address
given by the sum of the contents of an
address register and a constant.

goto ar0+Const;
goto ar0-Const;

goto ar0+Const with gr1 = gr1 << 2;

2 4.2

Relative branch unconditionally to the
address given by a constant.

skip Const_Addr;
skip Const_Addr with gr1 = gr2 and

gr3;

2 4.2

Relative branch unconditionally to the
address given by a general-purpose
register.

skip gr0;
skip gr0 with gr1--;

1 4.1

Branch unconditionally, delayed. (*) delayed goto gr0;
delayed goto gr0 with gr1++;

1 or 2 4.1, 4.2

Note The instruction marked with (*) shows an example of a delayed
unconditional branch syntax. The reserved word ‘delayed’ can be used

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-19Assembly Language Overview
Version 1.0

with any unconditional branch described above.

The separation of the delayed branch is introduced by a workaround for
a simplified programming. From a branch command fetching to a jump
execution it is elapse from one to three cycles. This time the processor
has time to extra fetch up to three instructions. These instructions are
named delayed.

Placed after a branch command the delayed instructions are performed
before the execution of the jump. They are performed at any case
independently of a branch condition performance.

An accurate number of delayed instructions depends on: its length, a
memory location and a type of the branch command.

5.1.9.2 Sub-Routine Call

The sub-routine call commands listed below are unconditional
commands. To provide a conditional call it is necessary to put a
condition expression in front of the call command, for example:
call MyFunc; // call unconditionally

if =0 call MyFunc; // call conditionally

A set of condition expressions can be found in paragraph 5.1.9.4 on page
5-20.

Sub-routine call commands are located only in the left part of an
assembly instruction.

In addition to instruction syntax (bold) an example of a scalar instruction
with the non-empty right part is given.

DESCRIPTION SYNTAX SIZE TYPE

Sub-routine call unconditionally. A
label defines the address of the sub-
routine first instruction.

call Const_Addr;
call Const_Addr with gr1++;

2 4.2

Sub-routine call unconditionally. An
address register contains the address of
the sub-routine first instruction.

call ar0;
call ar0 with gr1--;

1 4.1

Sub-routine call unconditionally. A
general-purpose register contains the
address of the sub-routine first
instruction.

call gr0;
call gr0 with gr1 = -gr1;

1 4.1

Sub-routine call unconditionally. The
address of the sub-routine first
instruction is given by the sum of
registers of a register pair.

call ar0+gr0;
call ar0+gr0 with gr1 = not gr1;

1 4.1

Sub-routine call unconditionally. The
address of the sub-routine first
instruction is given by the sum of the

call ar0+Const;
call ar0-Const;

2 4.2

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-20 Assembly Language Overview
Version 1.0

contents of an address register and a
constant expression.

goto ar0+Const with gr1 = gr1 << 2;

Relative sub-routine call
unconditionally. A label defines the
address of the sub-routine first
instruction.

callrel Const_Addr;
callrel Const_Addr with gr1++;

2 4.2

Relative sub-routine call
unconditionally. A register defines the
address of the sub-routine first
instruction.

callrel gr0;
callrel gr0 with gr1--;

1 4.1

Sub-routine call, delayed.(*) delayed call gr0;
delayed call gr0 with gr1++;

1 or 2 4.1, 4.2

Note The instruction marked with (*) shows an example of a delayed
unconditional sub-routine call syntax.. For more details see the note of
the preceding section 5.1.9.1.

5.1.9.3 Return from Sub-Routine/Interrupt

Commands of return from a subroutine/interrupt are located only in the
left part of an assembly instruction.

In addition to instruction syntax (bold) an example of a scalar instruction
with the non-empty right part is given.

DESCRIPTION SYNTAX SIZE TYPE

Return from a sub-routine. return;
return with gr7 = gr1 + gr2;

1 4.3

Return from an interrupt. ireturn;
ireturn with gr7 = gr0;

1 4.3

Return from a sub-routine, delayed. delayed return;
delayed return with gr7 = gr1 + gr2;

1 4.3

Return from an interrupt, delayed. delayed ireturn;
delayed ireturn with gr7 = gr0;

1 4.3

5.1.9.4 Branch Conditions

All conditional branches occur or do not occur depending on the flags
that were preliminary set in pswr register by one of the previous
instructions.

The flags are set only by arithmetic/logical operations in the right part of
a scalar instruction.

Thus, in order to make the conditional branch possible, the scalar
arithmetic, logical or shift operation is executed before the branch. This

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-21Assembly Language Overview
Version 1.0

operation sets the flags and makes possible the conditional branch
execution. For example:
begin "text"

...

gr2 = [ar0++] with gr0--; // Operation setting the condition flags.

if > goto Label; // Conditional branch to the Label.
...

end "text";

Commands of conditional branch are located only in the left part of an
assembly instruction.

The column "Syntax" contains the underlined part of the instruction
showing the condition syntax. In addition to instruction syntax (bold) an
example of a scalar instruction with the non-empty right part is given.

DESCRIPTION SYNTAX FLAGS

Zero if =0 goto ...;
if =0 goto Label with gr1++;

Z

Nonzero if <>0 goto ...;
if <>0 goto gr0 with gr1--;

~Z

Greater than if > delayed goto ...;
if > delayed goto ar0 with gr1--;

~Z AND ~N

Less than if < skip ...;
if < skip Label with gr1--;

N

Greater than or equal to if >= call ...;
if >= call Label with gr1--;

~N

Less than or equal to if <= callrel ...;
if <= callrel Label with gr1--;

N OR Z

Unsigned higher than or same
as

if u>= goto ...;
if >= goto Label with gr7 -= gr1;

~C

Unsigned lower than if u< return ...;
if u< return with gr7 = gr1 noflags;

C

Carry if carry call ...;
if carry call ar0 with gr7 -= gr1;

C

No carry if not carry return ...;
if not carry return with gr7 = gr1;

~C

Overflow if vtrue call ...;
if vtrue call ar0 with gr7 -= gr1;

V

No overflow

if vfalse return ...;
if vfalse return with gr7 = gr1;

~V

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-22 Assembly Language Overview
Version 1.0

Greater than with overflow if v> goto ...;
if v> goto ar0 with gr7 -= gr1;

~ ((N XOR V) OR
Z)

Less than with overflow if v< delayed goto ...;
if v< delayed goto gr1 with gr7 = gr1;

N XOR V

Greater than-equal sign with
overflow bit check.

if v>= callrel ...;
if v>= callrel gr0 with gr7 -= gr1;

~ (N XOR V)

Less than-equal sign with
overflow bit check.

if v<= ireturn ...;
if v<= ireturn with gr7 = gr1;

(N XOR V)
OR Z

5.1.10 Set of Basic Scalar Operations
All the processor scalar operations are located in the right part of an
assembly instruction, i.e. after the reserved word ‘with’. Only general-
purpose registers can be used in scalar operations.

Scalar operations are three-operand operations. Any general-purpose
register can be both source and destination operand of a scalar
expression, for example:

• gr0 = gr1 + gr2; - the destination operand;

• gr1 = gr0 + gr2; - the first source operand;

• gr0 = gr0 + gr0; - the destination and the source operand.

The processor supports three forms of scalar operations:

• a standard scalar expression:
gr1 = gr2 + gr3;
This form of an expression has the source and the destination
operands. It changes the contents of the destination general-purpose
register and sets the condition flags.

• a scalar expression that does not set the flags:
gr1 = gr2 + gr3 noflags;
This form of expression has the source and the destination operands. It
changes the contents of the destination general-purpose register but
does not change the condition flags. The modifier 'noflags' is used to
notify that the scalar operation does not change the flags. This modifier
can be applied to all scalar operations with the exception the shift
operations.

• A scalar expression that that does not have the destination operand:
gr2 + gr3;
or just
gr2;
This form of an expression is used to set the condition flags. No one of
the registers participating in the expression changes the contents. The
form is not allowed for shift operations.

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-23Assembly Language Overview
Version 1.0

5.1.11 Arithmetic Operations
Arithmetic operations are located only in the right part of an assembly
instruction.

In addition to instruction syntax (bold) an example of a scalar instruction
with the non-empty left part is given.

DESCRIPTION SYNTAX TYPE

Add the contents of two source registers
and store the sum in the destination
register.

gr0 = gr1 + gr2;
ar0 = gr0 with gr0 = gr1 + gr2;

6.3

Add the source operand to the contents of
the destination register and store the sum in
the destination register.

gr0 += gr1;
equivalent to: gr0 = gr0 + gr1;

ar0 = 100h with gr0 += gr1;

6.3

Add one to the contents of the source
register and store the sum in the destination
register.

gr1 = gr2 + 1;
ar1+=gr1 with gr1 = gr2 + 1;

6.3

Increment the contents of the register by
one.

gr1++;
equivalent to: gr1 = gr1 + 1;

ar1++ with gr1++;

6.3

Subtract the second source operand from
the contents of the first source register and
store the result in the destination register.

gr1 = gr0 - gr7;
[ar1++] = ar0 with gr1 = gr0 - gr7;

6.3

Subtract the source operand from the
contents of the destination register and
store the result in the destination register.

gr1 -= gr7;
equivalent to: gr1 = gr1 - gr7;

[--ar1] = gr0 with gr1 -= gr7;

6.3

Subtract one from the contents of the
source register and store the result in the
destination register.

gr1 = gr2 - 1;
call gr4 with gr1 = gr2 - 1;

6.3

Decrement the contents of the register by
one.

gr1--;
equivalent to: gr1 = gr1 - 1;

ar1-- with gr1--;

6.3

Add carry bit to the contents of the source
register and store the result in the
destination register.

gr1 = gr2 + carry;
ar4 += gr4 with gr1 = gr2 + carry;

6.3

Add carry bit to the sum of the source
registers and store the result in the
destination register.

gr1 = gr2 + gr6 + carry;
ar4++ with gr1 = gr2 + gr6 + carry;

6.3

Subtract carry bit from the contents of the
source register and store the result in the
destination register.

gr1 = gr2 - 1 + carry;
ar6 -= gr6 with gr1 = gr2 - 1 + carry;

6.3

Subtract bit from the difference of the
source registers and store the result in the
destination register.

gr1 = gr2 - gr6 - 1 + carry;
ar4-- with gr1 = gr2 - gr6 - 1 + carry;

6.3

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-24 Assembly Language Overview
Version 1.0

Load the difference between 0 and the
source operand into the destination register.

gr1 = - gr5;
goto gr4 with gr1 = - gr5;

6.3

Make the first step of multi-step
multiplication. The second source operand
should always be gr7.

gr1 = gr2 *: gr7;
ar4,gr4 = gr0 with gr1 = gr2 *: gr7;

6.3

Make next steps of multi-step
multiplication. The second source operand
should always be gr7.

gr1 = gr2 * gr7;
[ar6] = gr6 with gr1 = gr2 * gr7;

6.3

An example of an arithmetic operation that
does not change the condition flags.

gr1 = gr2 + gr2 noflags;
ar5++ with gr1 = gr2 + gr2 noflags;

6.3

An example of an arithmetic operation that
sets the condition flags, but does not
change the contents of the registers
involved.

gr1 + gr2;
[ar1++] = AAA with gr1 + gr2;

6.3

5.1.12 Logical Operations
Logical operations are located only in the right part of an assembly
instruction.

In addition to instruction syntax (bold) an example of a scalar instruction
with the non-empty left part is given.

DESCRIPTION SYNTAX TYPE

Load the bitwise logical OR of the source
registers to the destination register.

gr0 = gr1 or gr2;
ar0 = gr0 with gr0 = gr1 or gr2;

6.2

Load the bitwise logical AND of the source
registers to the destination register.

gr1 = gr2 and gr3;
ar0 = 100h with gr1 = gr2 and gr3;

6.2

Perform a bitwise exclusive OR of two
source operands and store the result in the
destination register.

gr2 = gr3 xor gr4;
ar0 = gr0 with gr2 = gr3 or gr4;

6.2

Load the bitwise logical complement of the
source register to the destination register.

gr1 = not gr2;
ar0 = 100h with gr1 = not gr2;

6.2

Perform a bitwise logical OR of the second
register and the bitwise logical complement
of the first register, and store the result in
the destination register.

gr0 = not gr1 or gr2;
ar0++ with gr0 = not gr1 or gr2;

6.2

Perform a bitwise logical OR of the first
register and the bitwise logical complement
of the second register, and store the result
in the destination register.

gr1 = gr2 or not gr3;
ar6-- with gr1 = gr2 or not gr3;

6.2

Perform a bitwise logical OR of the bitwise
logical complement of the first register and
the bitwise logical complement of the
second register, and store the result in the
destination register.

gr1 = not gr2 or not gr3;
return with gr1 = not gr2 or not gr3;

6.2

Perform a bitwise logical AND of the
second register and the bitwise logical

gr2 = not gr3 and gr4; 6.2

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-25Assembly Language Overview
Version 1.0

complement of the first register, and store
the result in the destination register.

ar4+=gr4 with gr0 = not gr1 and gr2;

Perform a bitwise logical AND of the first
register and the bitwise logical complement
of the second register, and store the result
in the destination register.

gr3 = gr4 and not gr5;
[ar6]=gr6 with gr3 = gr4 and not gr5;

6.2

Perform a bitwise logical AND of the
bitwise logical complement of the first
register and the bitwise logical complement
of the second register, and store the result
in the destination register.

gr3 = not gr4 and not gr5;
[ar6]=gr6 with gr3 = gr4 and not gr5;

6.2

Perform a bitwise exclusive OR of the
second register and the bitwise logical
complement of the first register, and store
the result in the destination register.

gr2 = not gr3 xor gr4;
[Addr]=gr0 with gr2 = not gr3 xor gr4;

6.2

Perform a bitwise exclusive OR of the first
register and the bitwise logical complement
of the second register, and store the result
in the destination register.

gr3 = gr4 xor not gr5;
ar0 = ar2 with gr2 = gr4 xor not gr5;

6.2

Set all bits to zero in the destination
register.

gr6 = false;
[ar0] = ar5,gr5 with gr6 = false;

6.2

Set all bits to 1 in the destination register. gr0 = true;
ar0=[ar2=10h] with gr0 = true;

6.2

Copy the contents of the source general-
purpose register to the destination general-
purpose register. (*)

with gr2 = gr4;
gr0 = gr5 with gr2 = gr4;

6.2

Note The operation marked with (*) uses the reserved word ‘with’ in front of
it, otherwise the compiler will regard the instruction as a copy command
and put it to the left part of an assembly instruction. In that case it will
not change the condition flags state because the commands executable in
the left part of the assembly instruction do not affect the flags. Compare:
gr2 = gr3; // command of copying in the left part
 // of the instruction (for example:
 // gr2 = gr3 with gr4 += gr5;)

with gr2 = gr3; // logical operation in the right part
 // of the instruction (for example:
 // [ar0+=5] = ar7 with gr2 = gr3;)

5.1.13 Flags Setting Operations
This section gives arithmetic and logical expressions that affect the
condition flags but do not change the contents of the registers involved.

All the expressions given below are located only in the right part of an
assembly instruction.

In addition to instruction syntax (bold) an example of a scalar instruction
with the non-empty left part is given.

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-26 Assembly Language Overview
Version 1.0

DESCRIPTION SYNTAX TYPE

Set the flags according to the contents of the register. gr0;
if > goto gr2 with gr0;

6.2

Calculates the difference between 0 and the contents
of the register and set the flags according to the result
of this operation.

- gr1;
[ar4++gr4] = ar2,gr2 with - gr1;

6.3

Add the contents of the second register to the contents
of the first register and set the flags according to the
result of this operation.

gr2 + gr3;
ar0 = 100h with gr2 + gr3;

6.3

Add one to the contents of the source register and set
the flags according to the result of this operation.

gr4 + 1;
gr2++ with gr4 + 1;

6.3

Subtract the contents of the second register from the
contents of the first register and set the flags
according to the result of this operation.

gr0 - gr7;
ar0 += gr0 with gr0 + gr7;

6.3

Subtract one from the contents of the source register
and set the flags according to the result of this
operation.

gr2 - 1;
gr7 = [ar0++gr0] with gr2 - 1;

6.3

Add carry bit to the contents of the source register
and set the flags according to the result of this
operation.

gr1 + carry;
ar4 -= gr4 with gr1 + carry;

6.3

Add carry bit to the sum of the source registers and
set the flags according to the result of this operation.

gr2 + gr6 + carry;
ar4++ with gr2 + gr6 + carry;

6.3

Subtract carry bit from the contents of the source
register and set the flags according to the result of this
operation.

gr2 - 1 + carry;
goto Addr with gr2 - 1 + carry;

6.3

Subtract bit from the difference of the source registers
and set the flags according to the result of this
operation.

gr2 - gr6 - 1 + carry;
ar4-- with gr2 - gr6 - 1 + carry;

6.3

Make the bitwise logical OR of the source registers
and set the flags according to the result of this
operation.

gr1 or gr2;
ar0 = gr0 with gr1 or gr2;

6.2

Make the bitwise logical AND of the source registers
and set the flags according to the result of this
operation.

gr2 and gr3;
ar0 = 100h with gr2 and gr3;

6.2

Make the bitwise exclusive OR of the source registers
and set the flags according to the result of this
operation.

gr3 xor gr4;
ar0 = gr0 with gr3 or gr4;

6.2

Make the bitwise logical complement of the source
register and set the flags according to the result of this
operation.

not gr2;
ar0 = 100h with not gr2;

6.2

Perform a bitwise logical OR of the second register
and the bitwise logical complement of the first
register, and set the flags according to the result of
this operation.

not gr1 or gr2;
ar0++ with not gr1 or gr2;

6.2

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-27Assembly Language Overview
Version 1.0

Perform a bitwise logical OR of the first register and
the bitwise logical complement of the second register,
and set the flags according to the result of this
operation.

gr2 or not gr3;
ar6-- with gr2 or not gr3;

6.2

Perform a bitwise logical OR of the bitwise logical
complement of the first register and the bitwise
logical complement of the second register, and set the
flags according to the result of this operation.

not gr2 or not gr3;
return with not gr2 or not gr3;

6.2

Perform a bitwise logical AND of the second register
and the bitwise logical complement of the first
register, and set the flags according to the result of
this operation.

not gr3 and gr4;
ar4+=gr4 with not gr1 and gr2;

6.2

Perform a bitwise logical AND of the first register
and the bitwise logical complement of the second
register, and set the flags according to the result of
this operation.

gr4 and not gr5;
[ar6]=gr6 with gr4 and not gr5;

6.2

Perform a bitwise logical AND of the bitwise logical
complement of the first register and the bitwise
logical complement of the second register, and set the
flags according to the result of this operation.

not gr4 and not gr5;
[--ar6]=gr2 with gr4 and not gr5;

6.2

Perform a bitwise exclusive OR of the second register
and the bitwise logical complement of the first
register, and set the flags according to the result of
this operation.

not gr3 xor gr4;
[Addr]=gr0 with not gr3 xor gr4;

6.2

Perform a bitwise exclusive OR of the first register
and the bitwise logical complement of the second
register, and set the flags according to the result of
this operation.

gr2 xor not gr7;
[ar0++]=gr0 with gr2 xor not gr7;

6.2

Set bit N, clear others bits. true;
ar0=[ar2=10h] with true;

6.2

Set bit Z, clear others bits. false;
[ar0] = ar5,gr5 with false;

6.2

5.1.14 Shift Operations
Shift operations are located only in the right part of an assembly
instruction.

In addition to instruction syntax (bold) an example of a scalar instruction
with the non-empty left part is given.

DESCRIPTION SYNTAX TYPE

Left-shift the contents of the source register by an
arbitrary number of bits and store the result in the
destination register. Shift constant is from 1 to 31.
Low-order bits are filled with zeros and the high-order
bits are shifted out through the carry bit.

gr0 = gr1 << 10;
ar0 = gr0 with gr0 = gr1 << 10;

6.1

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-28 Assembly Language Overview
Version 1.0

Left-shift the contents of the destination register by an
arbitrary number of bits and store the result back into
the destination register (reduced notation). Shift
constant is from 1 to 31. Low-order bits are filled with
zeros and the high-order bits are shifted out through
the carry bit.

gr0 <<= 2;
equivalent to: gr0 = gr0 << 2;

[ar0] = gr0 with gr0 <<= 2;

6.1

Logical right-shift the contents of the source register
by arbitrary bits and store the result in the destination
register. Shift constant is from 1 to 31. High-order bits
are filled with zeros and the low-order bits are shifted
out through the carry bit.

gr1 = gr2 >> 24;
ar0 = 100h with gr1 = gr2 >> 24;

6.1

Logical right-shift the contents of the destination
register by arbitrary bits and store the result back into
the destination register (reduced notation). Shift
constant is from 1 to 31. High-order bits are filled with
zeros and the low-order bits are shifted out through the
carry bit.

gr1 >>= 3;
equivalent to: gr1 = gr1 >> 3;
[ar0++] = gr3 with gr1 >>= 3;

6.1

Arithmetical right-shift the contents of the source
register by arbitrary bits and store the result in the
destination register. Shift constant is from 1 to 31.
High-order bits are sign-extended as they are right-
shifted, and the low-order bits are shifted out through
the carry bit.

gr2 = gr3 A>> 5;
ar0 += gr0 with gr2 = gr3 A>> 5;

6.1

Arithmetical right-shift the contents of the destination
register by arbitrary bits and store the result back into
the destination register (reduced notation). Shift
constant is from 1 to 31. High-order bits are sign-
extended as they are right-shifted, and the low-order
bits are shifted out through the carry bit.

gr2 A>>= 9;
equivalent to: gr2 = gr2 A>> 9;

skip Addr with gr2 A>>= 9;

6.1

Rotate the contents of the source register left arbitrary
bits and store the result in the destination register. Shift
constant is from 1 to 31.

gr3 = gr4 R<< 6;
ar0 -= gr0 with gr3 = gr4 R<< 6;

6.1

Rotate the contents of the destination register left
arbitrary bits and store the result back into the
destination register (reduced notation). Shift constant is
from 1 to 31.

gr3 R<<= 12;
equivalent to: gr3 = gr3 R<< 12;

goto gr0 with gr3 R<<= 12;

6.1

Rotate the contents of the source register right arbitrary
bits and store the result in the destination register. Shift
constant is from 1 to 31.

gr3 = gr4 R>> 7;
[--ar0] = gr0 with gr3 = gr4 R>>

7;

6.1

Rotate the contents of the destination register right
arbitrary bits and store the result back into the
destination register (reduced notation). Shift constant is
from 1 to 31.

gr3 R>>= 14;
equivalent to: gr3 = gr3 R>> 14;

ar5—with gr3 R>>= 14;

6.1

Rotate the contents of the source register left one bit
through the carry bit and store the result into the
destination register. Shift value must be 1.

gr4 = gr5 С<< 1;
ar0 -= gr0 with gr4 = gr5 C<< 1;

6.1

Rotate the contents of the destination register left one
bit through the carry bit and store the result back into
the destination register (reduced notation). Shift value
must be 1.

gr4 C<<= 1;
equivalent to: gr4 = gr4 C<< 1;

gr0 = gr7 with gr4 C<<= 1;

6.1

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-29Assembly Language Overview
Version 1.0

Rotate the contents of the source register right one bit
through the carry bit and store the result into the
destination register. Shift value must be 1.

gr5 = gr6 C>> 1;
[ar0+=2] = gr0 with gr5 = gr6 C>>

1;

6.1

Rotate the contents of the destination register right one
bit through the carry bit and store the result back into
the destination register (reduced notation). Shift value
must be 1.

gr5 C>>= 1;
equivalent to: gr5 = gr5 C>> 1;

ireturn with gr5 C>>= 1;

6.1

5.2 Vector Instructions
This section gives the complete list of the processor scalar instructions
with brief comments.

All vector instructions of the processor are grouped into tables according
to their functionality. The first column explains the instruction
functionality. The second one describes the instruction syntax. The third
one contains the size of an instruction and the fourth gives a type of the
instruction code.

Since the processor instructions contain the left and the right parts, the
discussed command or the operation is underlined. Non-underlined parts
of an instruction are actual commands or operations given to retain the
idea of the instruction structure.

5.2.1 Data Load and Store in Vector Instructions
Commands of memory access are located only in the left part of a vector
instruction.

At the memory access a number of loaded/stored long words equals to a
number of repetitions which are specified in the instruction (rep
number_of_repetitions).

All the registers participating in memory addressing must contain even
values, because the vector instructions process only 64-bit words of data.

In addition to instruction syntax (bold) an example of an actual vector
instruction with the non-empty right part is given.

Load from Memory Commands

DESCRIPTION SYNTAX SIZE TYPE

Load the contents of the source memory
location into the Vector Unit to process
data on the Active Matrix or on the
Vector ALU. According to repetitions
counter the appropriate number of long
words are loaded from the same memory
location. The address register contains
the source memory location address.

data = [ar0];
rep 4 data = [ar0] with not data;

1 5.1

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-30 Assembly Language Overview
Version 1.0

Load the contents of the source memory
location into the ram buffer. According
to repetitions counter the appropriate
number of long words are loaded from
the same memory location. The general-
purpose register contains the source
memory location address. (*)

ram = [gr2];
rep 12 ram = [gr2] with data + 0;

1 5.1

Load the contents of the source memory
location into the ram buffer. According
to repetitions counter the appropriate
number of long words are loaded from
the same memory location. The address
register is initialized with the contents of
the related general-purpose register that
points to the source memory location. (*)

ram = [ar4=gr4];
rep 1 ram = [ar4=gr4] with data + 1;

1 5.1

Load the contents of the source memory
location into the Vector Unit. According
to repetitions counter the appropriate
number of long words are loaded from
the source memory location with
postincrementation by 2.

data = [ar0++];
rep 32 data = [ar0++] with data;

1 5.1

Load the contents of the source memory
location into the Vector Unit. According
to repetitions counter the appropriate
number of long words are loaded from
the source memory location with
predecrementation by 2.

data = [--ar4];
rep 16 data = [--ar4] with data or ram;

1 5.1

Load the contents of the source memory
location into the wfifo buffer.
According to repetitions counter the
appropriate number of long words are
loaded from the source memory location
with postincrementation by the contents
of the related general-purpose register.

wfifo = [ar0++gr0];
rep 8 wfifo = [ar0++gr0], ftw;

1 5.1

Load the contents of the source memory
location into the ram buffer. According
to repetitions counter the appropriate
number of long words are loaded from
the source memory location with
preincrementation by the contents of the
related general-purpose register. (*)

ram = [ar0+=gr0];
rep 12 ram = [ar0+=gr0] with afifo - 1;

1 5.1

Store in Memory Commands

DESCRIPTION SYNTAX SIZE TYPE

Store the contents of the afifo
buffer into the destination memory
location given by the address
register. All data words are stored
into the same address, so only the last
word will actually be stored in that
location.

[ar0] = afifo;
rep 4 [ar0] = afifo with not afifo;

1 5.1

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-31Assembly Language Overview
Version 1.0

Store the contents of the afifo
buffer into the destination memory
location given by the general-
purpose register. All data words are
stored into the same address, so only
the last word will actually be stored
in that location.

[gr2] = afifo;
rep 2 [gr2],ram = afifo with afifo + 0;

1 5.1

Store the contents of the afifo
buffer into the destination memory
location. All data words are stored
into the same address, so only the last
word will actually be stored in that
location. The address register is
initialized with the contents of the
related general-purpose register that
points to the destination memory
location.

[ar4=gr4] = afifo;
rep 1 [ar4=gr4] = afifo with ram + 1;

1 5.1

Store the contents of the afifo
buffer into the destination memory
location with the address
postincrementation by 2.

[ar0++] = afifo;
rep 4 [ar0++] = afifo with vsum ,ram,0;

1 5.1

Store the contents of the afifo
buffer into the destination memory
location with the address
predecrementation by 2.

[--ar4] = afifo;
rep 16 [--ar4] = afifo with ram - 1;

1 5.1

Store the contents of the afifo
buffer into the destination memory
location with the address
postincrementation by the contents of
the general-purpose register.

[ar0++gr0] = afifo;
rep 8 [ar0++gr0] = afifo with not ram;

1 5.1

Store the contents of the afifo
buffer into the destination memory
location with the address
preincrementation by the contents of
the general-purpose register.

[ar0+=gr0] = afifo;
rep 12 [ar0+=gr0] = afifo with not ram;

1 5.1

Store the contents of the afifo
buffer into the destination memory
location and simultaneously into the
ram buffer. (*)

[ar0++],ram = afifo;
rep 5 [ar0++],ram = afifo with 0-1;

1 5.1

Note In the right part of the instruction marked with (*) the ram buffer cannot
be used because it has only one input/output port.

5.2.2 Vector No Operation Commands
The instruction set of NM6403 provides for eventuality of an absence of
the address command in the left part of the vector instruction. Moreover
a nul vector command exists and may be used in a program. The main
feature of the vector no operation command is that it is translated to the
zero machine code.

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-32 Assembly Language Overview
Version 1.0

DESCRIPTION SYNTAX SIZE TYPE

No operation vnul; 1 5.3

The absence of the address command in the
left part of the vector instruction.

rep 32 with not ram; 1 5.3

5.2.3 Vector Logical Operations

Logical operations over operands X and Y are located only in the right
part of a vector instruction. The operands X and Y are used to
parameterize the operations in the right part of the vector instruction. The
internal buffers of the Vector Unit such as ram, data, afifo and ‘null’
device are actually used in the vector instructions instead of the X and Y.

The vector logical operations are executed in the Vector ALU. According
to the nature of logical operations they do not require the Vector ALU to
be configured.

In addition to instruction syntax (bold) an example of an actual vector
instruction with the non-empty left part is given.

If a vector instruction does not contain memory access commands, the
left part of the instruction can be omitted (see paragraph 4.2 on page 4-
6).

DESCRIPTION SYNTAX TYPE

Calculate the bitwise logical OR of the
source operands and store the results into
the afifo. (*)

with X or Y;
rep 4 data = [ar0+=gr0] with data or ram;

7.1

Calculate the bitwise logical AND of the
source operands and store the results into
the afifo.

with X and Y;
rep 32 wfifo = [ar2++] with ram and afifo;

7.1

Calculate the bitwise exclusive OR of the
source operands and store the results into
the afifo.

with X xor Y;
rep 10 [ar0++] = afifo with afifo xor ram;

7.1

Calculate the bitwise logical complement
of the source operand and store the results
into the afifo.

with not X;
rep 16 data = [ar4++],ftw with not data;

7.1

Calculate the bitwise logical OR of the
second operand and the bitwise logical
complement of the first operand, and store
the results into the afifo.

with not X or Y;
rep 8 [ar2++] = afifo with not afifo or ram;

7.1

Calculate the bitwise logical OR of the first
operand and the bitwise logical
complement of the second operand, and
store the results into the afifo.

with X or not Y;
rep 1 [gr4] = afifo with ram or not afifo;

7.1

Calculate the bitwise logical OR of the
bitwise logical complement of the first
operand and the bitwise logical
complement of the second operand, and
store the results into the afifo.

with not X or not Y;
rep 3 with not afifo or not ram;

7.1

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-33Assembly Language Overview
Version 1.0

Calculate the bitwise logical AND of the
second operand and the bitwise logical
complement of the first operand, and store
the results into the afifo.

with not X and Y;
rep 2 with not afifo and ram;

7.1

Calculate the bitwise logical AND of the
first operand and the bitwise logical
complement of the second operand, and
store the results into the afifo.

with X and not Y;
rep 9 [ar2++] = afifo with afifo and not

ram;

7.1

Calculate the bitwise logical AND of the
bitwise logical complement of the first
operand and the bitwise logical
complement of the second operand, and
store the results into the afifo.

with not X and not Y;
rep 24 ftw with ram and not afifo;

7.1

Calculate the bitwise exclusive OR of the
second operand and the bitwise logical
complement of the first operand, and store
the results into the afifo.

with not X xor Y;
rep 21 data = [ar0++] with not data xor ram;

7.1

Fill the afifo with long words equal to
0000000000000000hl.

with vfalse;
rep 16 [ar3++] = afifo with vfalse;

7.1

Fill the afifo with vectors equal to
0FFFFFFFFFFFFFFFFhl.

with vtrue;
rep 32 wfifo = [ar5++gr5] with vtrue;

7.1

Note If the null device is used in the instruction marked with (*) it can be
omitted, for example

rep 32 data = [ar0++] with data;

In this case the data loaded from memory pass to the afifo without any
changes.

5.2.4 Vector Arithmetic Operations

Arithmetic operations over operands X and Y are located only in the right
part of a vector instruction. The operands X and Y are used to
parameterize the operations in the right part of the vector instruction. The
internal buffers of the Vector Unit such as ram, data and afifo are
actually used in the vector instructions instead of the X and Y.

The vector arithmetic operations are executed in the Vector ALU. Before
the Vector ALU is able to execute arithmetic operations it must be
configured by the nb1 register (see paragraph 3.3.2 on page 3-40).

In addition to instruction syntax (bold) an example of an actual vector
instruction with the non-empty left part is given.

If a vector instruction does not contain memory access commands, the
left part of the instruction can be omitted (see paragraph 4.2 on page 4-
6).

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-34 Assembly Language Overview
Version 1.0

DESCRIPTION SYNTAX TYPE

Add the operand X to the contents of the
operand Y and store the results in the afifo.

with X + Y;
rep 4 data = [ar0+=gr0] with data + ram;

7.2

Subtract the contents of the operand Y from the
operand X to and store the results in the
afifo.

with X - Y;
rep 32 wfifo = [ar2++] with ram - afifo;

7.2

Load the difference between 0 and the operand
Y to the afifo.

with 0 - Y;
rep 16 wfifo = [ar2++] with 0 - ram;

7.2

Add 1 to each element of the packed words
contained in the operand X and store the results
in the afifo.

with X + 1;
rep 8 ftw with afifo + 1;

7.2

Fill the afifo with the vectors whose every
element is equal to 1.

with 0 + 1;
rep 4 [ar4+=gr4] = afifo with 0 + 1;

7.2

Subtract 1 from each element of the packed
words contained in the operand X and store the
results in the afifo.

with X - 1;
rep 8 ram = [--ar2] with data - 1;

7.2

Fill the afifo with the vectors whose every
element is equal to -1.

with 0 - 1;
rep 8 with 0 - 1;

7.2

5.2.5 Mask Application Operations

Mask application operations over operands X and Y are located only in
the right part of a vector instruction. The operands X and Y are used to
parameterize the operations in the right part of the vector instruction. The
internal buffers of the Vector Unit such as ram, data and afifo are
actually used in the vector instructions instead of the X and Y.

The mask application operations are executed in the Mask Application
Unit. Before the Mask Application Unit is able to execute mask
application operations it must be configured by the nb1 and sb registers.
(see paragraph 3.3.2 on page 3-40 and paragraph 3.3.3 on page 3-44
respectivly).

In addition to instruction syntax (bold) an example of an actual vector
instruction with the non-empty left part is given.

If a vector instruction does not contain memory access commands, the
left part of the instruction can be omitted (see paragraph 4.2 on page 4-
6).

DESCRIPTION SYNTAX TYPE

Apply the mask M to the
operands X and Y, then
perform the bitwise logical
OR to the results of mask
application (X AND M) OR
(Y AND ~M) and store the
results into the afifo.

with mask M, X, Y;
rep 4 data = [ar0+=gr0] with mask afifo, data, ram;

7.3

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-35Assembly Language Overview
Version 1.0

Apply the mask M to the
operands X and Y, then shift
the result of mask application
to the operand X right one
bit, perform the bitwise
logical OR to the resulting
data and store the results into
the afifo.

with mask M, shift X, Y;
rep 8 data = [--ar0] with mask afifo, shift data, ram;

7.3

Description of the mask application procedure can be found in the
paragraph 1.5.4 on page 1-17. The cyclic shift of the operand right one
bit is described in the paragraph 1.5.6 on page 1-20.

5.2.6 Weighted Accumulation

Weighted accumulation operations over operands X and Y are located
only in the right part of a vector instruction. The operands X and Y are
used to parameterize the operations in the right part of the vector
instruction. The internal buffers of the Vector Unit such as ram, data
and afifo are actually used in the vector instructions instead of the X
and Y. The bias vector vr can also be used as the operand Y.

The weighted accumulation operations are executed in the Active Matrix.
Before the Active Matrix is able to execute weighted accumulation
operations it must be configured by the registers nb1 and sb (see
paragraph 3.3.2 on page 3-40 and paragraph 3.3.3 on page 3-44
respectivly).

In addition to instruction syntax (bold) an example of an actual vector
instruction with the non-empty left part is given.

If a vector instruction does not contain memory access commands, the
left part of the instruction can be omitted (see paragraph 4.2 on page 4-
6).

In case a mask is not applied to the X and Y, the first operand of
weighted accumulation is omitted, but the comma must stay on place to
distinguish the positions of the X and Y operands.

DESCRIPTION SYNTAX TYPE

Perform weighted accumulation of
the operand X and store the results
into the afifo.

with vsum , X, 0;
rep 12 data = [ar2++gr2] with vsum , data, 0;

7.4

Perform weighted accumulation of
the operand X, then add the content
of the operand Y to the result of
weighted accumulation and store the
results into the afifo.

with vsum , X, Y;
rep 32 ram = [--ar2] with vsum , data, vr;

7.4

Apply the mask M to the operands,
then perform weighted accumulation
of the (M AND X) operand, add the
operand (M AND ~Y) to the result of
weighted accumulation and store the

with vsum М, X, Y;
rep 8 data = [ar2++] with vsum ram, data, afifo;

7.4

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-36 Assembly Language Overview
Version 1.0

results into the afifo.

Perform weighted accumulation of
the operand X shifted right one bit,
then add the content of the operand Y
to the result of weighted
accumulation and store the results
into the afifo.

with vsum , shift X, Y;
rep 1 [ar2=gr2] with vsum , shift ram, ram;

7.4

5.2.7 Activation Operations
Activation operations are executed over operands in the right part of a
vector instruction. To activate the operands the reserved word
‘activate’ is used in front of the operand. Activation operations are
applied to the operands independently.

The type of the activation function to be applied to the operands depends
on the type of an entire operation. The saturation function is used
together with arithmetic operations, while the threshold function is used
together with logical ones.

The activation operations are executed in two Activation Units. Before
the Activation Units are able to apply the activation functions to the
operands each of them must be configured by the registers f1cr (for the
operand X) and f2cr (for the operand Y). (see paragraph 3.3.1 on page
3-34).

In addition to instruction syntax (bold) an example of an actual vector
instruction with the non-empty left part is given.

Logical Activation

Logical activation of data can be performed with any logical operation
given in 5.2.3 on page 5-32. In the table below examples of activation of
operands standing in different positions in the right part of a vector
instruction are listed.

DESCRIPTION SYNTAX TYPE

Activate the operand X
before the bitwise logical
OR is calculated.

with activate X or Y;
rep 32 data = [ar0++] with activate data or ram;

7.1

Activate the operand X,
before the bitwise logical
AND of the Y and the
bitwise logical complement
of X is calculated.

with not activate X and Y;
rep 16 data = [--ar0] with not activate data and ram;

7.1

Activate the operand Y
before the bitwise logical
OR is calculated.

with X or activate Y;
rep 8 data = [ar0++gr0] with data or activate ram;

7.1

Activate the operand Y,
before the bitwise logical
AND of the X and the
bitwise logical complement
of Y is calculated.

with X and not activate Y;
rep 12 [--ar0] = afifo with afifo and not activate ram;

7.1

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-37Assembly Language Overview
Version 1.0

Activate both operands
before the bitwise
exclusive OR is executed.

with activate X xor activate Y;
rep 8 ftw with activate afifo xor activate ram;

7.1

Activate both operands
before the bitwise logical
AND of the bitwise logical
complement of both
operands is executed.

with not activate X and not activate Y;
rep 2 with not activate afifo and not activate ram;

7.1

Activate the result of (M
AND X) operation before
the bitwise logical OR of
the masked operands is
executed.

with mask M, activate X, Y;
rep 8 data = [ar0++] with mask afifo, activate data, ram;

7.1

Activate the result of (~M
AND Y) operation before
the bitwise logical OR of
the masked operands is
executed.

with mask M, X, activate Y;
rep 1 data = [--ar0] with mask afifo, data, activate ram;

7.1

Activate the results of M
application to both
operands before the bitwise
logical OR of the masked
operands is executed.

with mask M, activate X, activate Y;
rep 4 with mask afifo, activate ram, activate ram;

7.1

Activate the result of (M
AND X) operation before
the cyclic shift right one bit
and the bitwise logical OR
of the masked operands are
executed.

with mask M, shift activate X, Y;
rep 12 with mask afifo, shift activate data, ram;

7.1

Arithmetic Activation

Arithmetic activation of data can be performed with any vector
arithmatic operation given in paragraph 5.2.4 on page 5-33. In the table
below examples of activation of operands standing in different positions
in the right part of a vector instruction are listed.

DESCRIPTION SYNTAX TYPE

Activate the operand X and then
add the activated X to the operand
Y.

with activate X + Y;
rep 32 data = [ar0++] with activate data + ram;

7.2

Activate the operand Y and then
subtract the activated Y from the
operand X.

with X - activate Y;
rep 8 data = [ar0++gr0] with data - activate ram;

7.2

Activate the both operands and
then add the activated X to the
activated Y.

with activate X + activate Y;
rep 16 data = [--ar0] with activate data +

activate ram;

7.2

Activate the operand X and then
perform weighted accumulation of
the activated X and add the result

with vsum , activate X, Y;
rep 2 data = [ar4++] with vsum , activate data,

ram;

7.2

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-38 Assembly Language Overview
Version 1.0

to the contents of the operand Y.

Activate the operand Y and then
add the result to the result of
weighted accumulation of X.

with vsum , X, activate Y;
rep 2 [ar6++] = afifo with vsum , ram, activate

afifo;

7.2

Perform the weighted accumulation
over the masked activated
operands.

with vsum M, activate X, activate Y;
rep 5 with vsum ram, activate ram, activate afifo;

7.2

Perform the weighted accumulation
over the activated shifted operand
X.

with vsum , shift activate X, 0;
rep 30 ftw with vsum , shift activate ram, 0;

7.2

5.2.8 Weights Loading
This section contains all vector commands necessary to load weight
coefficients to the Shadow and the Active Matrixes of the Vector Unit.

Weights loading operations are located in the left part of a vector
instruction.

In addition to instruction syntax (bold) an example of an actual vector
instruction with the non-empty right part is given.

DESCRIPTION SYNTAX SIZE TYPE

Load weights from memory to the
wfifo buffer.

rep 24 wfifo = [ar0++];
rep 24 wfifo = [ar0++] with ram + 1;

1 5.2

Load weights from memory to the
wfifo buffer and transfer the
requested part of the weights to the
Shadow Matrix.

rep 32 wfifo = [ar1++], ftw;
rep 32 wfifo = [ar1++],ftw with 0 - 1;

1 5.2

Load weights from memory to the
wfifo buffer and transfer the
requested part of the weights both to the
Shadow Matrix and then to the Active
Matrix.

rep 32 wfifo = [ar1++], ftw,
wtw;

rep 32 wfifo = [ar1++],ftw with 0 - 1;

1 5.2

Transfer the weights from wfifo to
the Shadow Matrix. (**)

ftw;
rep 16 ftw with not ram and afifo;

1 5.3

Copy the contents of the Shadow
Matrix and the configuration registers
to the Active Matrix and its
configuration registers. (*)

wtw;
rep 12 wtw with activate afifo;

1 5.3

Note In the instruction marked with (*) used the operation wtw the copying
the contents of Shadow Matrix to the Active Matrix. Because of the
hardware error of the NM6403 processor exists, at the using of the
operation wtw it is necessary to use the following instruction sequence,
in that way parallel execution of others instructions being blocked:

.wait
 nb1 = value;

AAsssseemmbbllyy IInnssttrruuccttiioonn SSeett SSuummmmaarryy

5-39Assembly Language Overview
Version 1.0

 wtw;

.branch;

Note The operation ftw marked with (**) can be used both separated and in
the left part of any vector command, for example
rep 32 data = [ar0++], ftw with vsum , data, 0;

5.2.9 Store the Vector Unit Control Registers
To store the vector unit control registers f2cr, f1cr, nb2, sb, vr in
memory a special command is used. The enumerated registers are not
directly read accessible, but their contents can be obtained indirectly.

DESCRIPTION SYNTAX SIZE TYPE

Vector registers saving in afifo buffer. rep 5 with store vregs; 1 7.5

All the vector unit control registers are 64-bit long. The repeat counter in
a vector instruction must be equal to 5 according to the number of
registers to store. The instruction above stores the registers into the
afifo buffer. So the contents of the registers can be stored in any
desired memory location. For more details see 5.2.1 on page 5-29.

®

©RC Module, 1999-2006

All rights reserved.

Neither the whole nor any part of the information contained in, or the
product described in this overview may be adapted or reproduced in
any form except with the prior written permission of the copyright
holder.

RC Module reserves the right to make changes without further notices
to product herein to improve reliability, function or design. RC
Module shall not be liable for any loss or damage arising from the use
of any information in this overview or any error or omission in such
information, or any incorrect use of the product.

Research Centre Module
Box: 166, Moscow, 125190, Russia
Tel: +7 (095) 152-9335
Fax: +7 (095) 152-4661
E-Mail: nm-support@module.ru
WWW: http://www.module.ru

Printed in Russia Data of issue: February 20, 2006

	0
	 NeuroMatrix NM6403 Architecture Overview
	1.1 Introduction
	1.2 External Processor Interface
	1.3 Common Description of Internal Processor Structure
	1.3.1 Brief Description of RISC-core Components
	1.3.2 Brief Description of Vector Unit Architecture

	1.4 Data Representation in Vector Unit
	1.5 Main Computation Nodes of Vector Unit
	1.5.1 Data Sources and Paths
	1.5.2 Weighted Accumulation Procedure
	1.5.3 Calculations in the Vector ALU
	1.5.4 Mask Application Procedure
	1.5.5 Application of Activation Functions
	1.5.6 Cyclic Shift Right One Bit
	1.5.7 Data Processing Order in Vector Unit

	1
	 Assembly Language Syntax Overview
	2.1 Reserved Words
	2.2 Assembler File Structure
	2.3 Sections
	2.3.1 Code Section
	2.3.2 Initialized Data Section
	2.3.3 Non-Initialized Data Section
	2.3.4 Space Between Sections

	2.4 Constants
	2.4.1 Constants Representation Formats
	2.4.1.1 Binary Integer Constant
	2.4.1.2 Octal Integer Constant
	2.4.1.3 Decimal Integer Constant
	2.4.1.4 Hexadecimal Integer Constant
	2.4.1.5 Floating-point Constant
	2.4.1.6 String Constant

	2.4.2 Constant Expression
	2.4.2.1 Numerical Constant Expression
	2.4.2.2 Address Constant Expression

	2.4.3 Definition and Use of Constants

	2.5 Label
	2.5.1 Label Declaration
	2.5.2 Label Definition
	2.5.3 References to a Label
	2.5.4 Types of Binding and Label Definition Area

	2.6 Variables
	2.6.1 Obtaining the Variable Address
	2.6.2 Obtaining the Variable Value
	2.6.3 Fundamental Types
	2.6.4 Compound Types
	2.6.4.1 Arrays
	2.6.4.2 Structures

	2.6.5 Initialization of Variables
	2.6.6 Variable Definition Area
	2.6.7 File Areas for Variables Declaration, Definition and Initialization

	2.7 Assembler Directives
	2.7.1 Directive .align
	2.7.2 Directives .branch and .wait
	2.7.3 Directives .if and .endif
	2.7.4 Directives .repeat and .endrepeat
	2.7.5 Directives of Debugging Information
	2.7.5.1 Directive .debug_arange
	2.7.5.2 Directives .debug_die and .debug_die_child
	2.7.5.3 Directive .debug_die_endchild
	2.7.5.4 Directives .debug_start_sequence и .debug_end_sequence
	2.7.5.5 Directive .debug_frame_cie
	2.7.5.6 Directive .debug_frame_fde
	2.7.5.7 Directive .debug_line
	2.7.5.8 Directive .debug_pubname
	2.7.5.9 Directive .debug_root_die
	2.7.5.10 Directive debug_source_directory
	2.7.5.11 Directive debug_source_file

	2.8 Pseudo Functions
	2.8.1 Function loword
	2.8.2 Function hiword
	2.8.3 Function sizeof
	2.8.4 Function offset
	2.8.5 Functions float and double

	2.9 Using Macros
	2.9.1 Purpose of Macros
	2.9.2 Syntax of Macros
	2.9.3 Description
	2.9.4 Using Label in Macros
	2.9.5 Importing Macros from Marco Library

	1
	 Registers
	3.1 Primary Register File
	3.1.1 Address Registers
	3.1.2 General-Purpose Registers
	3.1.3 Register Pairs

	3.2 Peripheral Control Register File
	3.2.1 Register gmicr
	3.2.2 Registers of Communication Port Control (ica, icc) (oca, occ)
	3.2.3 Register intr
	3.2.4 Register lmicr
	3.2.5 Register pc
	3.2.6 Register pswr
	3.2.7 Timer Counters t0 and t1

	3.3 Vector Register File
	3.3.1 Registers f1cr and f2cr
	3.3.2 Register nb1(nb2)
	3.3.3 Register sb (sb1 and sb2)
	3.3.4 Register vr
	3.3.5 Register-Container afifo
	3.3.6 Logical Register-Container data
	3.3.7 Register-Container ram
	3.3.8 Register-Container wfifo

	1
	 Format of Processor Instructions
	4.1 Types of Scalar Instructions
	4.2 Types of Vector Instructions
	4.3 Structure of Processor Instruction Word

	 Assembly Instruction Set Summary
	5.1 NM6403 Scalar Instructions Summary
	5.1.1 No Operation Command
	5.1.2 Load Commands
	5.1.3 Store Commands
	5.1.4 Stack Access Commands
	5.1.5 Register Copy Commands
	5.1.6 Register Initialization with Constant
	5.1.7 Address Register Modification Commands
	5.1.8 Register pswr Modification Commands
	5.1.9 Branch Commands
	5.1.9.1 Branch Unconditionally
	5.1.9.2 Sub-Routine Call
	5.1.9.3 Return from Sub-Routine/Interrupt
	5.1.9.4 Branch Conditions

	5.1.10 Set of Basic Scalar Operations
	5.1.11 Arithmetic Operations
	5.1.12 Logical Operations
	5.1.13 Flags Setting Operations
	5.1.14 Shift Operations

	5.2 Vector Instructions
	5.2.1 Data Load and Store in Vector Instructions
	5.2.2 Vector No Operation Commands
	5.2.3 Vector Logical Operations
	5.2.4 Vector Arithmetic Operations
	5.2.5 Mask Application Operations
	5.2.6 Weighted Accumulation
	5.2.7 Activation Operations
	5.2.8 Weights Loading
	5.2.9 Store the Vector Unit Control Registers

