20YOCT

Двухканальный быстродействующий операционный усилитель с обратной связью по току

1. Общие положения

2OYOCT — двухканальный операционный усилитель (OV) с обратной связью по току предназначен для использования в тракте приемопередатчика высокоскоростного мультиплексного канала передачи данных (МКПД). Оба канала OV используются для блока передатчика и рассчитаны на большие выходные токи (до 500 мА). Все каналы ОУ обеспечивают хорошие динамические параметры в широком диапазоне частот и коэффициентов усиления. Каналы ОУустойчиво работают на низкоомную нагрузку при коэффициентах усиления вплоть до $K_{\rm Y}=+3$ и $R_{\rm H}=10$ Ом и имеют функцию выключения каждого канала независимо, переводящую выходы ОУ в высокоимпедансное состояние. В данных ОУ использована новая архитектура входных каскадов, основанная на несимметричной мостовой схеме с использованием комплементарных «перегнутых» каскодов, позволяющая получить хорошие динамические параметры при минимальной «электрической длине».

2. Область применения

- Приемопередатчики МКПД
- Приемопередатчики xDSL
- Драйверы кабельных модемов
- Драйверы видео-каналов
- Буферы АЦП и ЦАП
- Трансимпедансные усилители

3. Устройство и состав микросхемы

3.1. Схема электрическая структурная приведена на рис.1

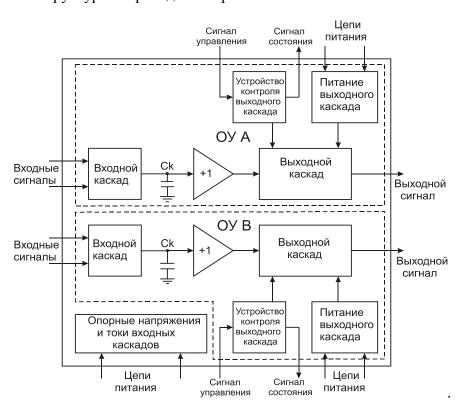
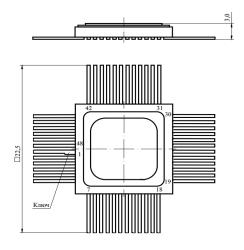


Рис.1 - Схема электрическая структурная


3.2. Условно графическое изображение микросхемы приведена на рис.2

		ı		1
1_	POSB		VCC_AB	48_
_ 2	NEGB	20УОСТ	POSA	47
_ 3_	OUTB_FB		NEGA	46_
_5,8	VCC_B		OUTA_FB	45_
12,13	OUTB		VCC_A	41,44
17,20	VEE_B		OUTA	36,37
21	TSTB		VEE_A	29,32
22	ENBB		TSTA	27_
23	VEE_AB		ENBA	26
25	GND		NC	38,39,40,42,43
24	NC		NC	28,30,31,33,34,35
4,6,7,9,10,11	NC		NC	14,15,16,18,19
				I

Примечания

Рис. 2- Условное графическое изображение микросхемы

Тип корпуса – металлокерамический — 5133.48-3

¹ Нумерация, тип и наименования выводов микросхемы приведены в таблице 1.

² Описание назначения выводов микросхемы приведено в таблице 1.

Таблица 1 – Нумерация и обозначения выводов микросхемы

Номер вывода	Тип вывода	Функциональное назначение	Условное обозначение
1	I	Не инвертирующий вход ОУ «В»	POSB
2	I	Инвертирующий вход ОУ «В»	NEGB
3	О	Выход обратной связи ОУ «В»	OUTB_FB
4,6,7	-	Не используются	-
5,8	S	Напряжение питания выходного каскада ОУ «В» (положительное)	VCC_B
9,10,11	-	Не используются	-
12,13	О	Выход ОУ «В»	OUTB
14,15,16,18,19	-	Не используются	-
17,20	S	Напряжение питания выходного каскада ОУ «В» (отрицательное)	VEE_B
21	О	Тестовый сигнал ОУ «В»	TSTB
22	I	Управляющий сигнал ОУ «В»	ENBB
23	S	Напряжение питания входных каскадов ОУ «А» и ОУ «В» (отрицательное)	VEE_AB
24	-	Не используется, соединяется с МП и Кр	-
25	S	Общий	GND
26	I	Управляющий сигнал ОУ «А»	ENBA
27	О	Тестовый сигнал ОУ «А»	TSTA
28,30,31	-	Не используются	-
29,32	S	Напряжение питания выходного каскада ОУ «А» (отрицательное)	VEE_A
33,34,35	-	Не используются	_
36,37	О	Выход ОУ «А»	OUTA
38,39,40	-	Не используются	_
41,44	S	Напряжение питания выходного каскада ОУ «А» (положительное)	VCC_A
42,43	-	Не используются	_
45	О	Выход обратной связи ОУ «А»	OUTA_FB
46	I	Инвертирующий вход ОУ «А»	NEGA
47	I	Не инвертирующий вход ОУ «А»	POSA
48	S	Напряжение питания входных каскадов ОУ «А» и ОУ «В» (положительное)	VCC_AB

П р и м е ч а н и я Расшифровка обозначений типа выводов:

- I вход;
- O выход;
- S питание; МП монтажная площадка корпуса 5133.48-3; Кр крышка корпуса 5133.48-3;

4. Указание по применению и эксплуатации.

4.1.Основные схемы включения микросхемы приведены на рисунках 3, 5, 7, 9.

Динамические параметры микросхем с токовой обратной связью сильно зависят от номинала резистора в цепи обратной связи Roc (R2, R3 на рис.3, 5, 7, 9), поэтому его значение необходимо выбирать оптимальным. Оптимальное значение Roc, зависящее от коэффициента передачи Ку, приведены ниже.

Таблица 2

Инвертиру	ощее включение	Неинвертирующее включение		
Ку от 1 до 4	Roc = 1 kOm	Ку от 2 до 8	Roc = 1 кОм	
Ку = 5 и более	Roc = 820 Ом	Ку = 9 и более	Roc = 820 Ом	

Указанные в таблице номиналы резистора Roc обеспечивают оптимальное сочетание быстродействия и устойчивости микросхемы. Увеличение номинала Roc приводит к снижению динамических параметров микросхемы, но способствует улучшению устойчивости. Снижение номинала Roc приводит к повышению динамических характеристик, однако чрезмерное уменьшение Roc может привести к потере устойчивости микросхемы. Не допускается включение включение микросхемы с Ky = 1 в неинвертирующем включении.

Не допускается включение емкости параллельно резистору Roc и подключение емкостей к инвертирующему входу при любом включении микросхемы.

5. Основные электрические параметры

5.1~3начения электрических параметров микросхемы при номинальных значениях напряжений питания $U_\Pi=\pm~5B$ и допустимых отклонениях от номинальных значений не более $\pm~5~\%$ соответствуют нормам, приведенным в таблице 1.

Таблица 1 — Электрические параметры микросхемы

Наименование параметра, единица измерения, режим измерения	Буквенное обозначение параметра	Норма па микроо не менее		Темпе- ратура среды, °С
Напряжение смещения нуля, мВ при $U_{\text{вx}} = 0$, $R_{\text{н}} = 100$ Ом	U _{см}	минус 8	8	
Входной ток неинвертирующего входа, мкА при $U_{\text{вх}} = 0$, $R_{\text{н}} = 100$ Ом	$I_{\scriptscriptstyle \mathrm{BX^+}}$	минус 15	15	
Входной ток инвертирующего входа, мкА при $U_{\text{вх}} = 0$, $R_{\text{н}} = 100$ Ом	$I_{\scriptscriptstyle \mathrm{BX} ext{-}}$	минус 30	30	25;
Максимальное выходное напряжение, В при $U_{\text{вх}} = 2$ В, $K_{\text{yU}} = +3$, $R_{\text{H}} = 100$ Ом	U _{вых тах}	± 3,6	_	минус 60;
Ток короткого замыкания, мА при $U_{\text{вх}} = 2$ B, $K_{yU} = +3$	I_{κ_3}	± 450	_	85
Выходной ток, мА при $U_{\text{вх}} = 2$ B, $K_{\text{yU}} = +3$, $R_{\text{H}} = 10$ Ом	$I_{\scriptscriptstyle m BMX}$	± 300	_	
Ток потребления (на один канал ОУ), мА при $U_{\text{вх}} = 0$, $R_{\text{н}} = 100$ Ом	I_{not}	_	30	
Верхняя граничная частота полосы пропускания, МГц при $U_{\text{вых}} = 0.5$ В, $K_{yU} = +3$, $R_{\text{H}} = 100$ Ом	$f_{\scriptscriptstyle B}$	160	_	
Скорость нарастания выходного напряжения, $B/мкc$ при $U_{вых}=2$ B , $K_{yU}=+3$, $R_{\rm H}=100$ Om	$V_{\mathrm{U}{\scriptscriptstyle \mathrm{B}\mathrm{b}\mathrm{i}\mathrm{X}}}$	900	_	25
Нормированная электродвижущая сила шума, нВ/ $\sqrt{\Gamma}$ ц при $U_{\text{Bx}}=0$, $K_{\text{yU}}=+21$, $f_{\text{Bx}}=1$ М Γ ц	Еш.н	_	8	
Коэффициент гармонических искажений, дБ $(R_{\rm H}=10~{ m Om},F_{{ m Bx}}=5~{ m M}\Gamma{ m u})$	K_{Γ}	_	минус 55	

6. Схемы включения микросхемы и их типовые характеристики.

6.1 Неинвертирующее включение ОУ.

С1...С10 – керамические конденсаторы 0,1 мкФ, 10%, 25 В (устанавливаются в непосредственной близости от соответствующих выводов питания микросхемы);

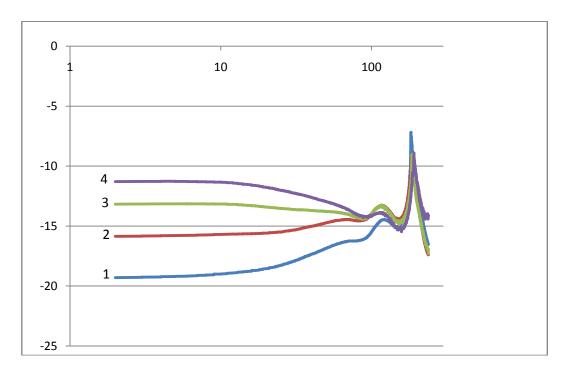
D1 – микросхема;

G1 – источник синусоидального сигнала ($U_{PP} = 200 \text{ мB}, F = 1 - 250 \text{ МГц}$);

G2, G3- источники постоянного напряжения номиналом (4,75...5,25) В;

Р- анализатор спектра;

R1 – резистор 51 Ом \pm 5 %, 0,125 Вт;


R2, R3 – резисторы 1 кОм \pm 1 %, 0,125 Вт;

R4, R5 – резисторы 0,125 BT, \pm 1 %, (249 Ом для Ky=5; 332 Ом для Ky=4; 499 Ом для Ky=3; 1кОм для Ku=2);

R7, R8 – резистор 51 Ом \pm 5 %, 0,125 Вт;

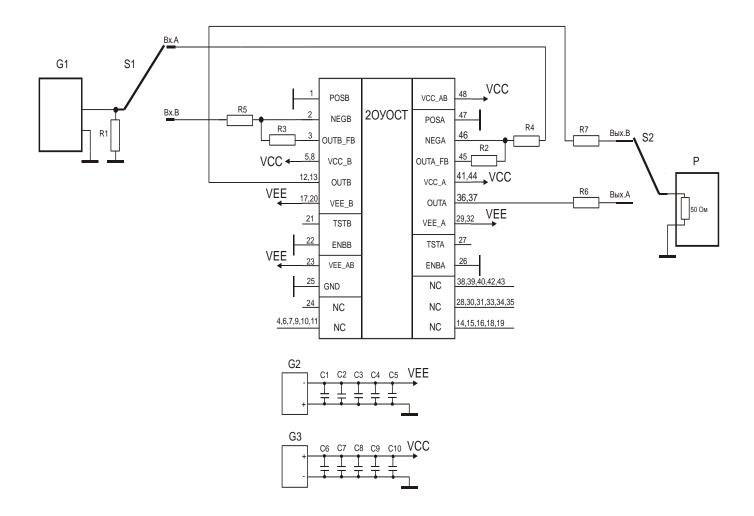

S1, S2 – переключатели.

Рис. 3 — Схема неинвертирующего включения микросхемы для измерения амплитудночастотных характеристик

Полоса пропускания по уровню 3 дБ:

Рис. 4 — Амплитудно-частотная характеристика каналов А, В микросхемы согласно схеме измерения рис.3 для различных Ку.

С1...С10 – керамические конденсаторы 0,1 мкФ, 10%, 25 В (устанавливаются в непосредственной близости от соответствующих выводов питания микросхемы);

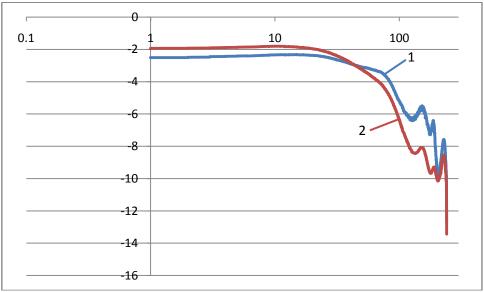
D1 – микросхема;

G1 – источник синусоидального сигнала ($U_{PP} = 200 \text{ мB}, F = 1 - 250 \text{ МГц}$);

G2, G2– источники постоянного напряжения номиналом (4,75...5,25) В;

Р- анализатор спектра;

R1 – резистор 51 Ом \pm 5 %, 0,125 Вт;


R2, R3 -резисторы 1 кOм \pm 1 %, 0,125 Bт;

R4, R5 – резисторы 0,125 BT, ± 1 %, (332 Oм для Ky= -3; 1кOм для Ku= -1);

R7, R6 -резистор 51 Ом $\pm 5 \%, 0,125 Вт;$

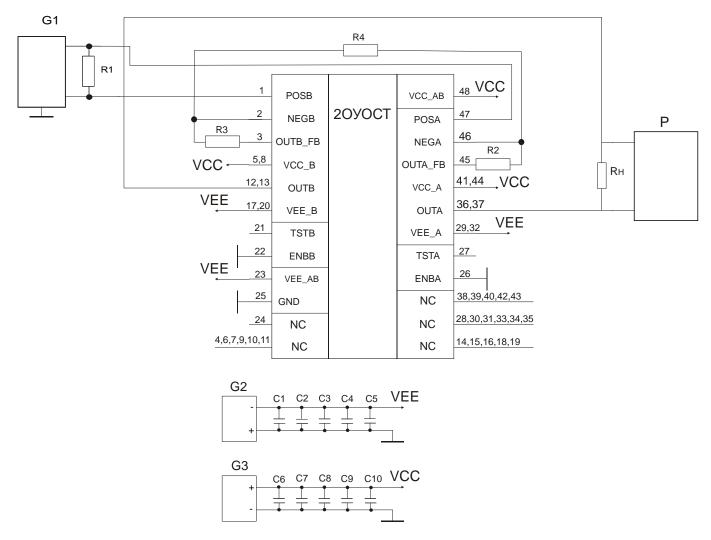

S1, S2 – переключатели.

Рис. 5 — Схема инвертирующего включения микросхемы для измерения амплитудночастотных характеристик

Полоса пропускания по уровню 3 дБ:

Рис. 6 — Амплитудно-частотная характеристика передатчиков A, B микросхемы согласно схеме измерения рис.5 для различных Ку.

С1...С10 – керамические конденсаторы 0,1 мкФ, 10%, 25 В (устанавливаются в непосредственной близости от соответствующих выводов питания микросхемы);

D1 – микросхема;

G1 – источник синусоидального сигнала ($U_{PP} = 1500 \text{ мB}, F = 1 - 250 \text{ МГц}$);

G2, G3- источники постоянного напряжения номиналом (4,75...5,25) В;

Р- двухлучевой осциллограф;

R1 – резистор 51 Ом \pm 5 %, 0,125 Вт;

R2, R3 – резисторы 1 кОм ± 1 %, 0,125 Вт;

R4 – резистор 249 Ом \pm 1 %, 0,125 Вт;

RH - резистор 50 Ом \pm 5 %, 1Вт;

 $K_{V.ДИ} = 9.$

Рис. 7 — Схема дифференциального включения микросхемы для измерения амплитудночастотных характеристик

- 6.3.1 Типовые значения основных технических характеристик усилителей **A**, **B** согласно схеме включения под электрическую нагрузку рис.7:
 - максимальный размах сигнала (при $f_{BX} = 5 \text{ M}\Gamma\text{ц}$), не менее: **Uвых = 14,3 В** от пика до пика;
 - гармонические искажения (при fbx = 5 МГц, Uвых = 14,3 В), не более: **минус 60 дБ**;
 - полоса пропускания по уровню 3 дБ, не менее: 75 МГц (см. рис. 8).

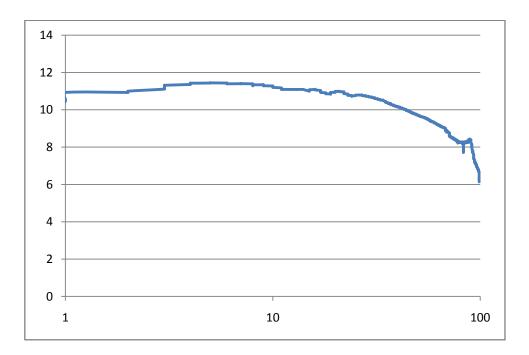
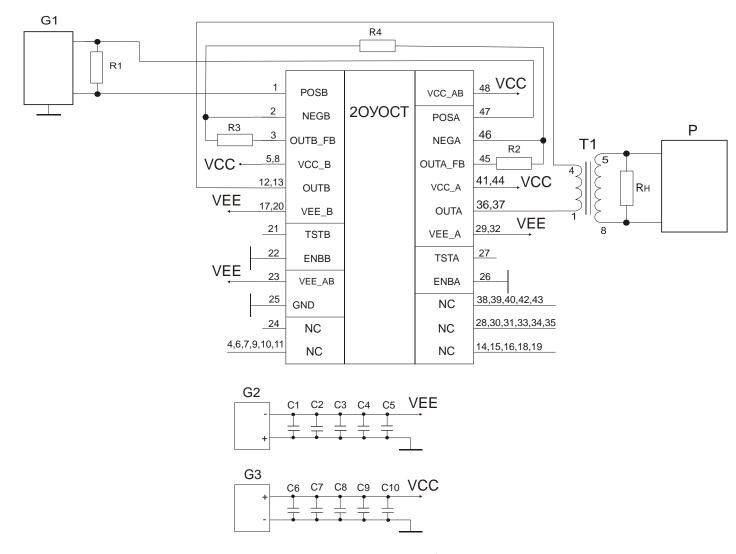



Рис. 8 — Амплитудно-частотная характеристика усилителей A, B микросхемы согласно схеме измерения рис.7

C1...C10 – керамические конденсаторы 0,1 мкФ, 10%, 25 В (устанавливаются в непосредственной близости от соответствующих выводов питания микросхемы);

D1 – микросхема;

G1 – источник синусоидального сигнала (U_{PP} = 1500 мB, F = 1 - 250 М Γ ц);

G2, G3- источники постоянного напряжения номиналом (4,75...5,25) В;

Р- двухлучевой осциллограф;

R1 – резистор 51 Ом \pm 5 %, 0,125 Вт;

R2, R3 -резисторы 1 кOм \pm 1 %, 0,125 Bт;

R4 – резистор 240 Ом \pm 1 %, 0,125 Вт;

RH – резистор 75 Ом \pm 5 %, 2Вт;

Т1- трансформатор ТИЛ6В;

Ку.диф = 9

Рис. 9 – Схема совместной работы приемника и передатчика микросхемы для измерения амплитудно-частотных характеристик с выходным трансформатором

- 6.4.1 Типовые значения основных технических характеристик **усилителей A, B** согласно схеме включения под электрическую нагрузку рис.9:
 - максимальный размах сигнала (при $f_{BX} = 5 \text{ M}\Gamma\text{ц}$), не менее: **Uвых = 22 В** от пика до пика;
 - гармонические искажения (при fbx = 5 МГц, Uвых = 22 В), не более: **минус 60** д**Б**;
 - полоса пропускания по уровню 6 дБ, не менее: 35 МГц (см. рис. 10).

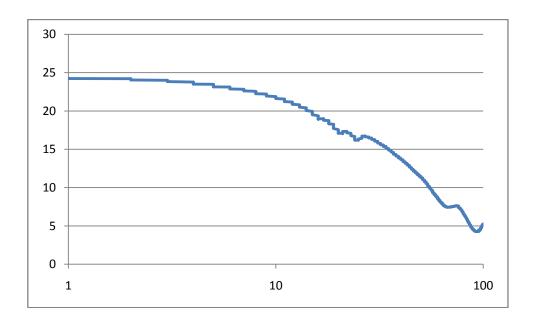


Рис. 10 — Амплитудно-частотная характеристика усилителей А, В микросхемы согласно схеме измерения рис. 9